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Performance in many visual tasks is impaired when
observers attempt to divide spatial attention across
multiple visual field locations. Correspondingly, neuronal
response magnitudes in visual cortex are often reduced
during divided compared with focused spatial attention.
This suggests that early visual cortex is the site of capacity
limits, where finite processing resources must be divided
among attended stimuli. However, behavioral research
demonstrates that not all visual tasks suffer such capacity
limits: The costs of divided attention are minimal when the
task and stimulus are simple, such as when searching for a
target defined by orientation or contrast. To date, however,
every neuroimaging study of divided attention has used
more complex tasks and found large reductions in response
magnitude. We bridged that gap by using functional
magnetic resonance imaging to measure responses in the
human visual cortex during simple feature detection. The
first experiment used a visual search task: Observers
detected a low-contrast Gabor patch within one or four
potentially relevant locations. The second experiment used
a dual-task design, in which observers made independent
judgments of Gabor presence in patches of dynamic noise
at two locations. In both experiments, blood-oxygen level–
dependent (BOLD) signals in the retinotopic cortex were
significantly lower for ignored than attended stimuli.
However, when observers divided attention between
multiple stimuli, BOLD signals were not reliably reduced
and behavioral performance was unimpaired. These results
suggest that processing of simple features in early visual
cortex has unlimited capacity.

Introduction

It is generally a bad idea to attend to many things at
once. For instance, it would be unwise to drive a car
while reading a book. Focusing attention improves
your ability to make judgments of relevant stimuli and
filter out irrelevant distractions. But is perceptual
processing always worse when attention is divided?
Behavioral research has in fact identified some tasks
that suffer no costs of divided attention, consistent with
unlimited capacity parallel processing. Those tasks
have not been tested with human neuroimaging,
however. The present study bridges that gap by
measuring the effects of divided spatial attention on
both behavioral and neuronal responses to simple
visual stimuli.

We first must distinguish between two related effects
of covert, endogenous spatial attention, which we
define as the voluntary selection of particular locations
without moving the eyes. First, an effect of selective
attention is a difference between responses to focally
attended and ignored (or less attended) stimuli. For
instance, a selective attention effect occurs when
observers detect and discriminate information at a cued
peripheral location more quickly and accurately than
information presented elsewhere in the visual field (e.g.,
Carrasco, 2011; Kahneman & Treisman, 1984; Palmer
& Moore, 2009; Posner, 1980; Shulman, Wilson, &
Sheehy, 1985; Yigit-Elliott, Palmer, & Moore, 2011).
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Physiologically, selective spatial attention increases the
spiking rate of neurons, as well as functional magnetic
resonance imaging (fMRI) responses, in areas of cortex
that represent the attended location compared with
ignored locations (Brefczynski & DeYoe, 1999; Desi-
mone & Duncan, 1995; Gandhi, Heeger, & Boynton,
1999; Kastner, Pinsk, De Weerd, Desimone, &
Ungerleider, 1999; Murray, 2008; Tootell et al., 1998;
Treue & Maunsell, 1996).

Second, an effect of divided attention is a difference
between behavioral or neuronal responses to one
focally attended stimulus compared with multiple
attended stimuli. Observers can divide attention across
multiple relevant locations even when they are non-
contiguous (e.g., Awh & Pashler, 2000; McMains &
Somers, 2004; Müller, Malinowski, Gruber, & Hillyard,
2003; but see Jans, Peters, & De Weerd, 2010).
However, dividing spatial attention often impairs
behavioral accuracy and slows response times com-
pared with focused attention (e.g., Braun, 1998; Grubb,
White, Heeger, & Carrasco, 2015; Kahneman, 1973;
Ling & Carrasco, 2006; Montagna, Pestilli, & Carrasco,
2009). Such costs are especially evident for relatively
complex tasks, such as word and object discrimination
(e.g., Harris, Pashler, & Coburn, 2004; Shaw, 1984;
Scharff, Palmer, & Moore, 2011). A cost of divided
attention can be explained by a capacity limit: The
perceptual system can process with high fidelity only a
limited amount of information per unit time. A related
explanation is that finite processing resources must be
divided among attended stimuli, leading to impair-
ments. However, some tasks that require merely
detecting simple visual features (such as changes in
luminance contrast) suffer no costs of divided atten-
tion, consistent with unlimited-capacity parallel pro-
cessing of multiple locations (Bonnel, Stein, & Bertucci,
1992; Graham, Kramer, & Haber, 1985; Scharff et al.,
2011).

There have been relatively few studies of the neural
correlates of divided attention, and they have all used
relatively complex tasks. The few fMRI studies on
divided attention in V1 have found blood-oxygen level–
dependent (BOLD) signal reductions during divided
attention relative to focused attention (McMains &
Somers, 2005; N. Müller, Bartelt, Donner, Villringer, &
Brandt, 2003; Pestilli, Carrasco, Heeger, & Gardner,
2011). Divided attention also reduces activity in human
area V4 under some conditions (Scalf & Beck, 2010). In
macaque area V4, neural firing rates are reduced when
monkeys attend to two locations compared with just
one (Mayo & Maunsell, 2016). Altogether, these
experiments support the notion that neural responses
are in some way reduced when attention is divided
across multiple stimuli, perhaps providing the physio-
logical basis for the capacity limits in similar perceptual
tasks. Specifically, the tasks used in those studies were

all relatively complex: They required detecting or
comparing feature conjunctions or letters, or placed
demands on visual working memory to compare
multiple stimuli over time.

However, a recent optical imaging study (Chen &
Seidemann, 2012) found a striking lack of signal
difference in monkey V1 between conditions of focused
and divided attention. That study used a yes/no Gabor
detection task that was simpler than the previous fMRI
studies. As reviewed above, behavioral capacity limi-
tations during divided attention have been found to
depend on the complexity of the task and stimuli
(Bonnel et al., 1992; Braun, 1998; Braun & Julesz, 1998;
Busey & Palmer, 2008; Palmer, 1994; Scharff et al.,
2011; Shaw, 1984). Assuming that physiological effects
of attention are causally linked to behavioral perfor-
mance (Ress, Backus, & Heeger, 2000), it follows that
the discrepancy between Chen and Seidemann (2012)
and other studies of V1 (McMains & Somers, 2005; N.
Müller et al. 2003; Pestilli et al., 2011) could be due to
differences in tasks and stimuli or to differences in
species or imaging method.

To resolve this discrepancy, we conducted the first
fMRI study of neuronal responses in early visual cortex
when attention is divided across multiple locations
during simple visual detection tasks with simple stimuli.
By ‘‘simple,’’ we mean that the task requires nothing
more than reporting the target presence in a single
display, and targets can be detected based on a
predictable difference from nontargets in just one
feature dimension (e.g., orientation). Note that such
‘‘simple’’ tasks can be perceptually challenging if the
target’s intensity is low.

Our study tested the following hypotheses:

1. When observers are cued to attend selectively to
one peripheral location, behavioral and neuronal
sensitivity are higher at that location than others.

2. Observers can detect multiple targets defined by
simple features in parallel with no cost.

3. Early visual cortex can process multiple simple
stimuli with no amplitude reduction during
divided attention, compared to focal attention.

Hypotheses 1 and 2 have been supported by previous
work, but Hypothesis 3 stands in contrast to previous
reports of large divided attention effects in human V1
with more complex stimuli and tasks.

To test the above hypotheses, we conducted two
experiments that employed two different paradigms
often used to study divided attention: A visual search
paradigm and a dual-task paradigm. In both experi-
ments, the task was to report the presence or absence of
simple Gabor patches, and we assessed the effect of
divided attention by comparing a distributed cue
condition with a focal cue condition. However, the two
paradigms differed in their design and interpretation.
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Our first experiment used a visual search paradigm
that was adapted from the design in Chen and
Seidemann (2012). The observer detected Gabor
patches superimposed onto orthogonal pedestals at
four possible locations. We manipulated attention by
varying the number of locations relevant for the
perceptual judgment (i.e., varying the relevant set size;
Palmer, 1994; Palmer, Ames, & Lindsey, 1993). In the
focal cue condition, the relevant set size was 1, and that
location was indicated by a precue. In the distributed
condition, the relevant set size was 4 (all locations
precued), and the observer had to consider stimuli at all
locations to make a single judgment of target presence
or absence (even if more than one target is present). In
such a paradigm, we predicted that increasing the
relevant set size will impair accuracy simply because of
added noise to the decision stage, even if the quality of
each individual sensory representation is unaffected
(Chen & Seidemann, 2012; Palmer, 1994). Our tech-
nique allowed us to assess divided attention effects both
on behavioral accuracy and on stimulus representations
in early visual cortex.

Our second experiment used a dual-task paradigm,
in which target Gabors were embedded in dynamic
noise, and there were only two possible locations rather
than four. The task required the observer to make
independent judgments of stimuli at each location,
rather than combine information about all of them. In
the distributed cue condition (i.e., dual-task condition),
the observer attended to both locations, and after the
stimuli disappeared, she or he was prompted with a
postcue to make a judgment about just one of them,
disregarding the other. The postcue reduces spatial
uncertainty at the decision stage. We compared the
distributed cue condition to a focal cue condition (i.e.,
single-task condition) in which the observer knew in
advance which location she or he would have to judge
at the trial’s end.

In both experiments, we assessed two effects of
attention on our behavioral and neuronal measures: (a)
the selective attention effect, which is the difference
between responses to cued and uncued stimuli in the
focal cue condition, and (b) the divided attention effect,
which is the difference between responses to focal cued
stimuli and the mean response to all stimuli in the
distributed cue condition. In both experiments, we
found evidence that observers could divide attention
across multiple locations. There was no behavioral
deficit in the distributed compared with focal cue
condition and little to no reduction of response
magnitudes in retinotopic visual cortex. These data
support the hypothesis that for certain simple tasks and
stimuli, there is no cost to dividing attention across
multiple spatial locations.

Experiment 1

As described above, our first experiment was
designed to estimate both selective and divided
attention effects as done by Chen and Seidemann
(2012). One alteration we made to their design was
based on the work of Shaw (1984). In her visual search
task, all stimulus locations were independent of one
another in terms of whether each contained a target. As
a result, there could be multiple targets in any one
display. This differs from the typical search paradigm
that restricts the displays to contain only one or zero
targets, which means that the locations are not
independent of one another. We adopted Shaw’s
approach because spatial independence allows us to
keep the physical displays constant across attention
conditions. Thus, an attentional precue that restricts
the number of task-relevant locations does not give any
information about what will appear in the whole search
display. This is especially desirable for our imaging
analysis: We can compare fMRI responses to each
location across attention conditions that do not differ
in visual stimulation.

Methods

Subjects

Six subjects (three men, three women) participated in
Experiment 1, ranging in age from 23 to 31 years. All
had had normal or corrected-to-normal vision. One of
the subjects was author ER. All subjects were
compensated at $20/hr. All subjects gave written and
informed consent in accord with the human subjects
Institutional Review Board at the University of
Washington, in adherence to the Declaration of
Helsinki.

Stimuli and procedure

Figure 1 shows a schematic of the procedure applied
during single trials for both fMRI and behavioral
experiments. The subject began by foveating a square
on the center of a gray screen (50% of max luminance).
At the start of each trial, a short oriented black line
appeared close to fixation for 500 ms, pointing to the
location(s) to be attended on that trial. There were four
possible locations: one in each quadrant of the visual
field. Subjects were cued to detect targets at either one
location (‘‘focal’’ condition) or all four locations
(‘‘distributed’’ condition). In the distributed condition,
the task was to report whether one or more targets were
present at any of the four locations, whereas in the
focal condition, the task was to report target presence
or absence at just the cued location.
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After a variable stimulus-onset interval (varied
between 0 and 1700 ms), four horizontally oriented
circular Gabor patches (two cycles per degree, Gauss-
ian standard deviation of 18, 20% contrast) appeared
simultaneously within each quadrant (one per quad-
rant, centered 5.668 diagonally from fixation). Each of
these patches acted as a pedestal for a potential target
stimulus: a vertically oriented Gabor patch of varying
contrast (typically between 1.0% and 1.7%). During the
fMRI experiment, the contrast of the target was
constant within subjects and across conditions. A target
appeared at each location with a probability of 0.2755,
independently across trials, locations, and whether it
was a focal or distributed condition. This value was
chosen so that the probability of a single target
appearing at a single location (0.2755) was the same as
no target appearing at any of the four locations (1–
0.2755)4. When present, targets appeared simulta-
neously with pedestals, remained on the screen for 300
ms, and then disappeared with the pedestals.

The subject’s task was to report their confidence that
a target had appeared in the attended location(s), on a
scale from 1 to 4, where 1¼ very unlikely, 2¼ unlikely, 3
¼ likely, and 4¼ very likely. The window for submitting
a response ended 1,500 ms after stimulus onset.
Immediately after the response or response window
expiration, feedback was provided by changing the

color of the fixation square to either green (correct), red
(incorrect), or yellow (no response); the lower two and
upper two confidence ratings (very unlikely and
unlikely; likely and very likely) were collapsed for the
purposes of feedback. After a variable interval, the next
trial was initiated by the appearance of the attention-
directing cue(s).
Practice sessions: Subjects spent several hours practic-
ing the different conditions in the laboratory in front of
a CRT monitor prior to scanning, to familiarize
themselves with the stimuli, task, and response
mapping. A secondary purpose was to choose appro-
priate target contrast levels for each subject so that
performance would be well away from floor and ceiling
in both focal and distributed cue conditions. Stimulus
properties such as size, pedestal contrast, and back-
ground contrast were matched to those used in the
subsequent scanning sessions. For practice only, we
reduced the duration of the fixation intervals from 12 s
to 3 s to save time.

A second practice session took place with subjects
performing the task while lying in the bore of the
scanner (no fMRI data collected) to assimilate the
subject with the exact conditions to be encountered
during the imaging experiment. Also, because of
differences in display equipment, the appropriate
target contrast levels estimated in the lab often needed
to be slightly adjusted for the scanner environment.
Around 1 hr per subject was devoted to practice in the
scanner.

During practice in the laboratory, the stimuli were
generated and displayed via a Dell Inspiron 530
desktop computer and presented on a 41-cm ViewSonic
690fB CRT monitor. During sessions conducted in the
scanner, the stimuli were generated using a Dell Studio
1558 laptop and back-projected onto a fiberglass screen
via an Epson Powerlite 7250 projector. Stimuli for all
experiments were created with Matlab software
(MathWorks) and presented using the Psychophysics
Toolbox (Brainard, 1997; Pelli, 1997).
fMRI session: After practice, each subject participated
in a single fMRI scanning session. fMRI data were
acquired in a Phillips 3T scanner at the Diagnostic
Imaging Science Center at the University of Wash-
ington. Functional images were acquired using an echo
planar sequence, with a 32-channel high-resolution
head coil. We used a repetition time of 1 s and echo
time of 30 ms. Eighteen axial slices (80 3 80 matrix,
220-mm field of view, no gap) were collected per
volume (voxel size: 2.75 3 2.75 3 3.4 mm). Anatomical
images were acquired using a standard T1-weighted
gradient echo pulse sequence.

We collected 16 functional scans in total from each
subject: two spot localizer scans, two standard reti-
notopic mapping scans, and 12 experimental scans.
During the experimental scans, subjects performed

Figure 1. Example trial sequence in Experiment 1. The precue

could be directed to one of the four visual quadrants (focal) or

all four quadrants (distributed). The size of the cue is

exaggerated for purpose of demonstration. In this example, a

vertical target Gabor is present in the lower right location.
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trials of the target-detection task. Across trials within a
scan, subjects were always cued to direct their attention
to the same location(s). Scans alternated between focal
and distributed cue conditions.

Each experimental scan consisted of six blocks of 12-
s fixation intervals followed by 16-s trial intervals. The
trial intervals contained four 4-s trials. At the beginning
of each trial interval, low-contrast circular outlines
appeared around the four stimulus locations (co-
centered with stimuli, radius 38) and remained on the
screen for the duration of the interval. Responses were
collected using a magnet-compatible fiber-optic key-
press device.

Importantly, there were no stimulus-related differ-
ences between scans and between conditions (excepting
the attention-directing cue); the probability of a target
appearing in any of the four locations was always
constant and independent across locations, trials, and
conditions. The only manipulation was via the cues
that directed attention.

Data analyses

fMRI analyses: We used standard phase-encoding
retinotopic mapping procedures to define visual areas
V1, V2, V3, and V4 (Engel, Glover, & Wandell, 1997).
We then restricted the regions of interest (ROIs) to the
area of visual space stimulated during the experimental
scans using the spot localizer data. Using this
procedure, we successfully delineated the retinotopic
locations of all four stimuli in V1 but were unable to
find reliable activation in all four quadrants within V2–
V4, presumably because of the relatively small Gauss-
ian envelope used in the spot localizer (SD ¼ 18). We
therefore restrict our analyses to V1, which contained
four ROIs: one corresponding to each visual field
quadrant. All preprocessing (anatomical-functional co-
registration, conversion to standardized Talairach
space, slice-scan time correction, motion correction,
and linear trend removal) was performed using
BrainVoyager. We then imported preprocessed fMRI
voxel time courses imported into Matlab for analysis
with custom software. For each individual voxel in a
given ROI (V1), we analyzed the time course of
response to each trial interval. That time course was
converted to units of percent signal change by
normalizing by the mean response over the last three
time points of the preceding fixation interval. We then
estimated the response to that trial interval by
averaging normalized time points 7–16 (in seconds,
relative to the start of the first trial). Those values were
then averaged across trial intervals, voxels, and scans of
identical conditions to produce five summary data
points per ROI: one for each of the four selective
attention conditions (cue to each of the four quadrants)
and one for the divided attention condition. Note that

in this blocked design, it is not possible to estimate the
response to individual trials nor to separate trials with
and without a target stimulus added to the pedestals.
However, the stimulus statistics and target probabilities
at each location were independent of the cue condition,
and nothing other than the Gabor stimuli was ever
presented in the visual field regions for which the ROIs
were selective.

To calculate the effect of selective attention, we
determined the response to the focal cued stimulus by
averaging the four focal cued condition summary data
points across ROIs. To calculate the response to an
uncued stimulus, we then averaged the summary data
points from the ROI representing the visual quadrant
diagonally opposite to the cued location. The estimated
response to the focal uncued stimulus was subtracted
from the response to the focal cued stimulus for each
subject, and the effect of selective attention was derived
by taking the mean of the differences across subjects.

Similarly, the effect of divided attention was
obtained by first calculating the response to stimuli in
the distributed condition by averaging the distributed
condition summary data points across all four ROIs.
The effect of divided attention was then calculated by
subtracting the response to the unattended stimulus in
the focal cue condition from the response to the
distributed cue condition.

To evaluate the statistical significance of pairwise
differences between conditions, we conducted standard
dependent-measures t tests, as well as nonparametric
bootstrapping. For each of 10,000 simulated experi-
ments, we resampled five observers with replacement
from our original set of five, and for each observer, we
resampled with replacement a new set of BOLD
responses from the original set of scans and then
averaged over those scans. We then computed the
average within-subject difference between conditions
for that bootstrap repetition. After 10,000 repetitions,
we computed 95% confidence intervals (CIs) on the
distribution of bootstrapped mean differences. These
CIs were ‘‘bias-corrected and accelerated’’ (Efron,
1987).
Behavioral analyses: We collected behavioral responses
during the imaging experiment and assessed them using
signal detection analysis (Green & Swets, 1966). The
distribution of responses across the four confidence
levels (regarding target presence) allowed us to
construct receiver-operating characteristic (ROC)
curves. We characterized observers’ detection accuracy
with the area under the ROC curve (Ag, also known as
Green’s area; Pollack & Hsieh, 1969). Ag is a measure
of sensitivity independent of bias, which is especially
important in this design, because the correct answer
was ‘‘target present’’ more often in distributed cue than
focal cue trials. Observers may adopt different decision
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criteria in those two conditions, but Ag should capture
only differences in sensitivity.

Except where otherwise noted, we restricted the
ROC analysis to include only trials that contained
only one or zero targets, because performance with
multiple targets is affected by the ‘‘redundant target
effect’’ (Miller, 1982; Palmer, Verghese, & Pavel, 2000;
Shaw, 1982; Verghese & Stone, 1995), whereby
additional targets increase the probability to detect
any target. We constructed ROC curves in the focal
cued and distributed conditions by plotting five pairs
of hit and false alarm rates against each other. Each
point represents the probability of a hit (responding
positively to a target at the cued location[s]) and the
probability of a false alarm (responding positively
when there was no target at any location) at a
particular response level. At the highest level, no trials
are represented as target-present responses, yielding
hit and false alarm rates of 0 and anchoring the curve
at the origin. One level down, only responses of very
likely are considered target-present responses. One
more level down, responses of very likely or likely are
considered target-present responses, yielding some-
what higher hit and false alarm rates, and so on. At
the lowest level, all responses are considered ‘‘target
present,’’ generating a final point that anchors the
ROC curve to the upper right corner. The more hits
and fewer false alarms, the greater the area under the
curve, and the more sensitive the observer is to the
difference between target-present and target-absent
trials. We computed the area under the curve, Ag, by
sequentially connecting each of the five points with a
straight line and calculating the geometric area
contained below that line.

We also computed ROC curves for the uncued
stimulus in trials with a focal cue. For each response
level, the uncued hit rate was the proportion of
positive responses on trials with no target at the cued
location, but one target at an uncued location. The
uncued false alarm rate was the proportion of positive
responses on trials with no target at any location. We
then calculated uncued Ag as the area under the curve
formed of pairs of these uncued hit and false alarm
rates, as before.

One subject (S3) produced Ag values very near 0.5
(chance detection) during all conditions. Thus, there
was no evidence that S3 was attending and responding
as directed, and this subject was removed from all other
analyses. Single-subject behavioral data are shown in
Table 1.

Results

Behavioral performance

Using a visual search task for simple features, we
tested the hypothesis that divided attention does not

reduce behavioral accuracy or physiological responses
in human V1, relative to focal selective attention.
Detection accuracy (area under the ROC curve, Ag) is
reported for each subject in Table 1 and plotted in
Figure 2A. We assessed two within-subject attentional
effects in the data: the selective attention effect and the
divided attention effect (plotted in the right panel of
Figure 2A).
Selective attention: We assessed the effect of selective
attention on target detection in focal cue trials by
comparing the Ag values from the focal cued and
uncued conditions within subjects. Cued Ag was
moderately high (M ¼ 0.71, SEM¼ 0.04), but uncued
Ag was near chance (M ¼ 0.48, SEM ¼ 0.03), which
indicates that the observers were able to ignore targets
at uncued locations such that their presence or absence
did not affect responses to the cued target. The
difference between cued and uncued Ag was on average
0.23 Ag and reliable across observers (SEM¼ 0.04),
dependent-samples t(4)¼ 6.29, p ¼ 0.003.
Divided attention: Mean accuracy in the distributed
cue condition was 0.68 (SEM¼ 0.02) and not reliably
lower than in the focal cued condition. The mean Ag

difference was 0.04 and not statistically significant
(SEM¼0.05), dependent-samples t(4)¼0.73, p¼0.51.
Note that in a search task like this, even models with
independent perceptual processing predict divided
attention costs on accuracy because of noise at the
decision stage, where each additional relevant loca-
tion introduces a chance for error (Chen & Seid-
emann, 2012; Palmer, 1994; Palmer et al., 1993). But
in this experiment, with relatively few trials per
observer in the scanner, the small cost was not
detectable.

In that regard, our study did not strictly replicate
Chen and Seidemann (2012), who did find a
significant reduction in behavioral accuracy in a
distributed cue condition. However, our design was
not exactly the same as theirs: Their monkeys were
required to localize the target by saccading to it, and
there could never be more than one target per trial. In

Subject

Target

contrast

Focal

cued Ag Distributed Ag

Focal

uncued Ag

S1 1.5% 0.85 0.71 0.56

S2 1.7% 0.75 0.62 0.41

S3 1.3% 0.53 0.48 0.53

S4 1.4% 0.60 0.69 0.45

S5 1.4% 0.64 0.71 0.47

S6 1.5% 0.72 0.65 0.52

Table 1. Single-subject behavioral performance during fMRI.
Notes: Target contrast indicates the contrast of all vertical
Gabors superimposed on 20% contrast Gabors (pedestals). See
the Methods section for a description of the ROC analysis and
computation of Green’s area (Ag).

Journal of Vision (2017) 17(6):19, 1–20 White et al. 6

Downloaded from jov.arvojournals.org on 07/16/2021



contrast, our observers merely had to report the
presence or absence of any target, and given that all
four locations had independent probabilities of target
presence, there could be more than one at a time.
These differences could contribute to the apparent
difference in the divided attention effect on behav-
ioral accuracy.

The above analysis excluded trials with more than
one target, to compare focal and distributed cue
accuracy levels with appropriately matched trials (as
there can only ever be zero or one target at the focal
cued location). But within the distributed cue condi-
tion, we did find a redundant target effect: With
multiple targets, the mean Ag increased to 0.78 relative

to 0.68 from trials with a maximum of one target. The
mean difference of 0.10 between those two conditions
was reliable (SEM¼ 0.04), t(4)¼ 2.48, p ¼ 0.04.
However, including all trials (regardless of the number
of targets) did not change our conclusion about the
difference between focal and distributed cue conditions:
In this analysis, mean Ag values were nearly equal (0.71
vs. 0.72, respectively; mean difference¼0.01), t(4)¼0.3,
p¼ 0.77.

fMRI responses

The mean V1 BOLD responses to blocks of trials
(relative to intervening blank fixation intervals) are
plotted in Figure 2B. We assessed the same two
attentional effects as for the behavioral data (Figure
2A).
Selective attention: In focal cue trials, BOLD responses
to focal cued stimuli were higher than to uncued
stimuli. The mean within-subject difference in BOLD
signal change was 0.10% (SEM¼ 0.04%; bootstrapped
95% CI¼ [�0.02, 0.19]). Given our prediction, based on
prior physiological and neuroimaging work, that
responses to attended stimuli should be greater than
responses to ignored stimuli, we conducted a one-tailed
dependent-samples t test on this selective attention
effect, which was significant, t(4)¼ 2.62, p¼ 0.029. This
effect was robust regardless of which, or how many, of
the uncued ROIs were included in the calculation of the
uncued mean.
Divided attention: The primary goal of the experiment
was to measure the effect of dividing attention on
responses in the primary visual cortex. The effect of
divided attention (focal cued – distributed cued) on
the BOLD signal was slightly negative (M¼�0.07%)
and not significantly different from zero (SEM ¼
0.07%, bootstrapped 95% CI ¼ [�0.23, 0.09]),
dependent-samples t(4) ¼�1.07, p ¼ 0.345. This lack
of divided attention effect in V1 is similar to the
results of the optical imaging study by Chen and
Seidemann (2012), which used similar stimuli and
behavioral paradigm. In contrast, previous human
fMRI research has shown robust effects of divided
attention in early visual cortex, but these studies used
relatively complex stimuli and/or change detection
tasks (McMains & Somers, 2005; N. Müller et al.,
2003; Pestilli et al., 2011).

Modeling an effect of divided attention

The statistical comparisons of the focal- and
distributed cue conditions suggest that fMRI responses
are just as high and behavioral responses are just as
accurate when dividing attention across multiple
locations as when attending selectively to a single
location. We went further to compare our results to the

Figure 2. Behavioral (left column) and fMRI (right column) data

from Experiment 1. The conditions are illustrated in the legend at

the top. ‘‘Focal uncued’’ data are the mean of responses to the

three uncued stimuli (for behavior) or the mean response to the

stimulus opposite the cued stimulus (for fMRI) in trials with the

focal cue; ‘‘focal cued’’ data are the mean response to the single

cued stimulus in the same trials; ‘‘distributed cued’’ data are the

mean of responses to all four stimuli in distributed cue trials. (A)

Behavioral accuracy in units of area under the ROC curve (Ag). (B)

Mean BOLD responses in area V1 in each attention condition. (C)

Differences in behavioral Ag between two pairs of conditions. (D)

Differences in V1 BOLD responses between the same two pairs of

conditions. All error bars¼61 SEM. Solid points¼ data; open

points¼model predictions for divided attention under the all-or-

none switching model (see text).
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predictions of a particular quantitative model of
divided attention: the all-or-none switching model. This
model assumes that attention can be devoted to only a
single location during each 300-ms stimulus presenta-
tion, so the observer selects a single random location
for full processing on each distributed cue trial. The
probability of any single location being attended on a
given trial is then 0.25. We then assume that responses
(behavioral and neural) to the one attended location
should be equivalent to the focal cued responses and
responses to the other three stimuli are equivalent to
the focal uncued responses. These assumptions allow us
to predict behavioral sensitivity for each subject and
BOLD responses for each scan in the distributed cue
condition. Averaging across locations and trials, the
predicted values for divided attention fall one quarter
of the way between the corresponding uncued and cued
values measured in the focal cue trials.

For the behavioral data, the predicted distributed
cue Ag is plotted in Figure 2A (left panel, open symbol).
Within subjects, the mean difference between the
predicted distributed Ag and the measured distributed
Ag was 0.14 (SEM ¼ 0.03), dependent-samples t(4)¼
4.25, p¼ 0.013. We can therefore reject the all-or-none
switching model and accept the notion that subjects
efficiently selected multiple locations on any given trial
in the distributed cue condition.

For the imaging data (Figure 2B), the mean
difference between the predicted and measured BOLD
signal change in the distributed cue condition was
0.15% and not statistically significant (SEM¼ 0.08%),
dependent-samples t(4)¼ 1.78, p¼ 0.149; bootstrapped
95% CI ¼ [�0.04, 0.32]. Hence, although there was no
hint of a divided attention effect in V1, we cannot reject
the switching model based on the neuroimaging data
alone.

The null-hypothesis testing described above pro-
duces an ambiguous result and is unable to tell which
model best matches our fMRI data. To reveal more, we
took a Bayesian approach of comparing the likelihoods
of two models, given the data:

M1: Unlimited-capacity parallel processing: BOLD
responses in the distributed cue condition have the
same mean as responses to focal cued stimuli.
M2: All-or-none serial switching: BOLD responses in
the distributed cue have a mean ¼ of the way
between focal cued and uncued responses.

We formalized both models with Gaussian distribu-
tions that were assumed to have the same standard
deviation: the mean of the standard deviations of the
focal cued and uncued responses. (The switching
model’s standard deviation cannot be estimated inde-
pendently, because its predicted values are computed
via a transformation of focal cued and uncued
responses.) We then computed the likelihood of the

whole data set D given both models: p(D jM1) and p(D
j M2). For each model j, that likelihood is:

p DjMj

� �
¼
YN

i¼1
pðRijMjÞ

where Ri is the mean BOLD response in the distributed
cue condition for subject i and the probability p is
computed from the Gaussian probability density
function with the mean and standard deviation
assigned to model j. We then computed the likelihood
ratio K for the two models. We also assume a flat prior,
that is, p(M1)¼ p(M2)¼ 0.5. According to Bayes Rule,
therefore, the likelihood ratio K is equivalent to the
ratio of posteriors:

K ¼ p DjM1ð Þ
p DjM2ð Þ ¼

pðM1jDÞ
pðM2jDÞ

Furthermore, given that both of our models have zero
free parameters, the likelihood ratio K is equivalent to
the Bayes factor (Kass & Raftery, 1995). We found that
K¼ 17.8, favoring Model 1 (no divided attention effect)
over Model 2 (switching model).

In summary, both the behavioral and neuroimaging
data in Experiment 1 were consistent with independent
capacity-free processing of simple features at multiple
locations during visual search. Relative to when
attention was focused on one stimulus, there was no
cost to behavioral accuracy when attention was divided
and no reduction in the magnitude of V1 responses. In
the next experiment, we sought to generalize our results
with a different paradigm and stimuli that might
provide greater signal-to-noise ratios in visual cortex.

Experiment 2

The second experiment used a dual-task design
rather than visual search (Figure 3). The task was again
to report the presence or absence of brief Gabor
stimuli, but there were only two possible locations, and
there was a postcue at the end of every trial that
instructed the observer which single location to judge.
A precue instructed the participant either to attend to
one side and to ignore the other (focal cue trials) or to
attend to both sides (distributed cue trials). At the end
of each distributed cue trial, a postcue prompted
observers to judge one of the attended locations
independently of the other. The focal cue condition
could also be labeled the ‘‘single-task’’ condition,
whereas the distributed cue condition is the ‘‘dual-task’’
condition, because both stimuli must be analyzed
independently. Attentional effects with this paradigm
may differ from the search paradigm for at least two
reasons: First, only in the search paradigm does
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increasing the number of attended locations risk
impairing performance simply by adding noise to the
decision, because the observer must combine over
multiple noisy representations. The postcue reduces
spatial uncertainty to minimize divided attention
deficits cause by noise at the decision stage. Second, an
observer in the search paradigm might hope to benefit
from redundant targets presented simultaneously at
multiple locations, whereas in the dual-task paradigm,
she or he has the additional challenge of judging each
location separately. Our goal in Experiment 2 was to
broaden the scope of our findings by using this dual-
task paradigm. In addition, the target stimuli were
embedded in 2 s of dynamic noise, which we expected
would produce stronger cortical responses than the
brief Gabor pedestals in Experiment 1.

Methods

Subjects

Six subjects (aged 21–34 years; four men) partici-
pated in Experiment 2 (none of whom participated in
Experiment 1). All had normal or corrected-to-normal
vision. One of the subjects was author AW. All subjects
received $30/hr for MRI sessions and $10/hr for
behavioral sessions. All subjects gave written and
informed consent in accord with the human subjects
Institutional Review Board at the University of

Washington, in adherence to the Declaration of
Helsinki.

Stimuli and procedure

Figure 3 illustrates the display and trial sequence.
Observers began each trial by fixating a small (0.38 3
0.38) black cross at the center of the screen for 0.5 s.
Then a precue appeared. It was composed of two
horizontal line segments (0.358) on either side of
fixation, with their inner endpoints 0.258 from the
screen center. Each line was blue or red, depending on
the attention condition (see below). After 0.5 s, the
precue disappeared, and two patches (68 3 68) of
dynamic noise appeared to either side of fixation,
centered at 48 eccentricity on the horizontal meridian.
The noise ‘‘movies’’ played with an effective frame rate
of 30 Hz for 2 s and had 1/f power spectra in space and
time. The movies were generated as follows: Each
frame was first populated with independent Gaussian
noise at each pixel, with mean 0 and unit variance. The
frame was then filtered using a Fourier transform such
that the amplitude of each spatial frequency component
fs was proportional to 1/fs. Then, the whole movie was
similarly filtered in time (via convolution) so that the
amplitude of each temporal frequency ft was propor-
tional to 1/ft. The pixel values were then rescaled to
have a standard deviation of 0.12 (a relatively low
luminance contrast). The local contrast of each frame
was attenuated at the edges by a linear ramp down to
zero beginning 0.58 from the nearest edge.

The observer’s task was to detect a Gabor patch
embedded within the noise movies. The Gabor was a
horizontally oriented sinusoidal grating, with spatial
frequency 1 cycle/8, windowed by a 2D Gaussian with
SD¼0.58 (total width¼2.58). It could appear anywhere
within the noise image, as long as its edges were at least
0.58 from the edges of the image. The Gabor’s contrast
was modulated in time by a Gaussian envelope with SD
¼ 33 ms. The moment of maximal contrast was chosen
from a uniform distribution, excluding the first and last
200 ms of the movie. On each trial, there was a 50%
chance that one Gabor was present in the movie on the
left and an independent 50% chance that a Gabor was
present in the movie on the right.

After the noise movies finished, a postcue appeared,
which was composed of the same colored lines as the
precue. One line was red and one blue. Each observer
was assigned one color for the entire experiment, and
after seeing the postcue, she or he reported whether or
not a Gabor was present within the preceding noise
movie on the side indicated by the line of that color.
The observer reported Gabor presence or absence by
pressing one of two buttons on a button box held in the
hand on the same side as the postcue (i.e., she or he
responded with the left hand when asked about the left

Figure 3. Example trial sequence in Experiment 2. In this

example, the blue cues indicate potential target locations. A

target Gabor is present in the noise movie on the right.
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side and vice versa). The observer had 1 s in which to
respond. At the end of that 1-s response interval,
feedback was provided: The vertical arm of the fixation
cross turned green if the response was correct, red if the
response was incorrect, or blue if neither of the two
relevant buttons was pressed within the 1-s interval.
The fixation mark remained colored for 0.5 s, after
which it returned to black, and 0.5 s later, the next trial
began with a precue.

The attention condition was controlled by the precue
and was constant within each block of seven trials. In
the focal cue trials, the precue was composed of one red
and one blue line, exactly matching the postcue. Thus,
the observer knew in advance which location she or he
would be asked about at the trial’s end and could
completely ignore the other location. The left stimulus
was cued in half of the focal cue blocks, and the right
was cued in the remainder. In distributed cue trials,
both precue lines were of the observer’s assigned color,
and the observer had to attend equally to stimuli on
both sides, waiting until the postcue to know which
location to judge.

In addition, four of the six subjects were presented
with blocks of single-stimulus trials, in which noise
movies were presented only to the left or only to the
right. Those data are not relevant to the main research
questions in this article and are not included in the
analyses that follow.
Practice sessions: Each observer was first trained in the
Gabor detection task for at least two 1-hr sessions
outside the scanner, in a psychophysics testing room.
Stimuli were generated via an Apple Mac Mini
computer and presented on a 35-cm ViewSonic CRT
monitor operating at 120 Hz. The display was
calibrated to linearize the luminance output. The
Gabor contrast was gradually reduced until perfor-
mance in the focal cue condition stabilized at roughly
80% correct. The contrast from training was usually
also appropriate during the MRI sessions, but some
adjustment was necessary to stay near the observer’s
threshold. That adjustment was made during practice
trials at the start of each scanning session (when
possible), and then the contrast was held constant for
all experimental conditions. The average Gabor con-
trast was 24.1% (range¼ 21.0%–26.75%).
fMRI scanning sessions: We used the same Phillips 3T
scanner as in Experiment 1. Anatomical images were
acquired using a standard T1-weighted gradient echo
pulse sequence (1-mm resolution). Functional images
were acquired using an echo planar sequence, with a
32-channel high-resolution head coil, a repetition time
of 2 s, and an echo time of 25 ms. Thirty axial slices (80
3 80 matrix, 2403 2403 104-mm field of view, 0.5-mm
gap) were collected per volume (voxel size: 3 3 3 3 3
mm). During scanning sessions, the stimuli were
generated via an Apple Macbook Pro laptop and back

projected onto a fiberglass screen via an Epson
Powerlite 7250 projector. The display was calibrated to
linearize the luminance output.

Within each scanning session, each observer com-
pleted seven to eight main experimental scans. Each
scan lasted 264 s and contained six blocks of seven
trials each. There were 12-s breaks between blocks,
during which the observer simply fixated centrally. In
addition, there were 2 s of blank fixation before the
start of the first trial and 11 s of blank fixation after the
end of the last trial. For the four observers who had
single-stimulus conditions, two of the six blocks in each
scan were single stimulus (one left and one right), two
blocks were distributed cue, one block was focal cue
left, and one block was focal cue right. For the
observers without single-stimulus conditions, two
blocks were distributed cue, two were focal left, and
two were focal right. Block order was randomized
within each scan.

In addition, we conducted one to two localizer scans
within each session. The same noise movies were
displayed as in the main experimental scans, except
with no Gabors and the noise contrast (SD of pixel
values before normalization to the [0, 255] range) was
raised to 0.5. During each 264-s localizer scan, one
noise patch was presented at a time for 16 s, alternating
left and right sides, for a total of eight presentations on
each side, with 8 s of blank at the end. The observer’s
task was to detect brief luminance contrast decrements
in either the fixation cross or the noise movie. The time
between each contrast-dimming event (each randomly
assigned to either fixation or noise movie) was set to 2 s
plus a value drawn from an exponential distribution,
with mean ¼ 6 s and clipped at 10 s. Each dimming
event lasted 250 ms. The observer’s task was to press
any of the buttons on the response boxes within 1 s
after detecting any contrast dimming. The magnitudes
of the contrast decrements were adjusted for each
participant to keep hit rates ;80% to 90%.
Eye tracking: During training sessions, we used a head-
mounted Eyelink 2 eye-tracker (SR Research, Ontario,
Canada) to provide feedback about fixation breaks. In
all but two scanning sessions, the right eye’s gaze
position was tracked with an Eyelink 1000 tracker
positioned outside the bore of the magnet and
calibrated at the start of the session. Because of
technical difficulties, the gaze position data were not of
high enough quality to be analyzed in 50% of scans.
However, the observers always believed that their eyes
were being tracked and were reminded to strictly follow
instructions to fixate centrally during every trial.
Retinotopy: Each observer participated in an additional
retinotopic mapping session, composed of six fMRI
scans. In each scan, we presented one of three periodic
stimulus types: a contracting ring, a rotating wedge, or
alternating vertical/horizontal bow ties. All stimuli
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were composed of sections of radial checkerboards
counter-phase flickering at 8 Hz. During each 256-s
scan, the stimulus made eight ‘‘cycles’’ (rings contract-
ing from 118 to 0.48 radius; wedge rotating clockwise
one full circle; bow ties presented vertically then
horizontally). Using standard methods (Engel et al.,
1997), we analyzed rings and wedge scans to identify
the phase of the cycle that each voxel preferred,
providing eccentricity and polar angle maps, respec-
tively. A simple general linear model (GLM) analysis
on the bow-tie scans, contrasting horizontal and
vertical stimuli, provided meridian maps, locating the
regions of visual cortex representing the horizontal and
vertical meridians. Using these activity patterns, we
drew borders between areas V1, V2, V3, V3AB, and V4
on inflated representations of each observer’s cortical
hemispheres. With these borders, we defined collections
of anatomical voxels belonging to each retinotopic
region, used to constrain the analysis of the main
experimental data (see below).

Data analyses

fMRI analyses: Using BrainVoyagere software, we
preprocessed each functional scan as follows: trilinear
slice time correction; motion correction to the first
volume of the first scan (trilinear detection and sinc
interpolation); phase-encoding distortion correction,
based on one volume collected in the opposite direction
at each session’s beginning; and high-pass temporal
filtering (cutoff of two cycles/scan). Each functional
scan was co-registered with a high-resolution anatom-
ical scan collected in the same session, which was itself
co-registered with the anatomical scan from the
retinotopy session.

We defined ROIs with a GLM analysis of the
localizer scans, contrasting responses to noise movies
on the left and right. The GLM requires a fixed form of
the hemodynamic response function, which we set to a
three-parameter Gamma function (Boynton, Engel,
Glover, & Heeger, 1996). The parameters were adjusted
to maximize the average r2 values in the localizer
analysis: phase delay¼ 3 s, time constant¼ 1.25 s, pure
delay¼ 2.8 s. For each stimulus (left and right noise
patches), we defined ROIs in the contralateral hemi-
sphere within each of four retinotopic areas: V1
through V4. In each area, we selected all the voxels
responding to the contralateral stimulus with an r2

value of at least 0.33 (i.e., the predicted response in the
GLM explained at least 33% of the variance of the
voxel’s time course). Using cutoff r2 values of 0.25 and
0.5 introduced slightly more noise in the data (either by
including noisier voxels or not enough voxels) but did
not change any of the conclusions.

We then used a GLM approach to analyze data from
each experimental scan in each ROI (converted to

percentage signal change averaged across voxels). The
GLM included predictors for blocks of each condition
(e.g., distributed cue; focal cue left, etc.), as well as a
linear trend and DC component. (Note that this
blocked design analysis, like in Experiment 1, averages
responses over multiple whole trials.) For each scan, we
then collapsed across hemispheres to estimate beta
weights from each retinotopic area in three conditions:
focal cued, in which the cued stimulus was in the ROI’s
receptive field; focal uncued, in which the uncued
stimulus was in the receptive field; and distributed cued,
which averaged over responses to both stimuli in trials
with the distributed cue. For each scan, we also
computed differences between pairs of these beta
weights (e.g., selective attention effect¼ focal cued �
focal uncued). Beta weights and differences were then
averaged across scans, then across observers. We
evaluated the statistical significance of pairwise differ-
ences with standard repeated-measures t tests as well as
nonparametric bootstrapping (as in Experiment 1).
Behavioral analyses: Because in this experiment ob-
servers reported target presence or absence without a
confidence rating, we analyzed accuracy in units of d0

rather than Ag. We computed d0 with the standard
formula: d0¼ z(hit rate) – z(false alarm rate), where z is
the inverse of the normal cumulative distribution
function. Although the observer was never asked to
report Gabor presence at the uncued location during
focal cue trials, we can estimate an uncued d0 level,
which should be zero if the observer was able to
completely ignore it. The uncued hit rate was the
proportion of trials in which a target was present only
on the uncued side and the observer reported ‘‘pre-
sent.’’ The uncued false alarm rate was the proportion
of trials in which a target was present on neither side
and the observer reported ‘‘present.’’

We bootstrapped d0 differences between pairs of
conditions by simulating 10,000 repetitions of the
experiment. In each repetition, we drew with replace-
ment from our set of six observers and for each
observer created new hit and false alarm rates by
drawing from binomial distributions with means equal
to the true hit and false alarm rates and then computed
d0 and the across-subject mean difference between
conditions. A difference was considered significant if
the 95% confidence interval of bootstrapped differences
did not include 0. We computed bias-corrected and
accelerated confidence intervals according to Efron
(1987).
Eye-tracking analysis: We were unable to collect any
useable gaze position data from two of the six
observers. For the remaining four observers, for each
trial we analyzed the right eye’s gaze position during
the time between the onset of the precue and the onset
of the postcue. We cut out segments of the gaze
position data in which the tracker lost the eye (e.g.,
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during blinks), including in the cut 30 ms before and
after the missing segment. That resulted in a loss of
,1% of data. We then computed the mean horizontal
and vertical gaze positions and detected saccades.
Saccades were defined as shifts in gaze position (.0.258
and ,128) with two-dimensional velocities that ex-
ceeded, for at least 6 ms, an ellipse with horizontal and
vertical radii equal to five times the horizontal and
vertical median-based standard deviations, respectively
(Engbert & Mergenthaler, 2006).

Results

Gaze fixation

For two of the six subjects, we were unable to collect
any usable eye data during scanning, although all
observers believed their eye movements were being
monitored at all times, were encouraged to fixate, and
practiced outside the scanner with online feedback
about fixation breaks. For the remaining four observ-
ers, we computed the mean gaze position and detected
saccades during each trial between the precue and
postcue. For all observers, the mean difference in
horizontal gaze position between focal cue left and
focal cue right trials was less than 0.58 visual angle (M¼
0.258, SEM¼ 0.108). On average, saccades occurred on
only 3.9% of focal cue trials (SEM¼2.4%) and on 2.5%
of distributed cue trials (SEM ¼ 1.5%). Therefore,
observers successfully fixated, and the fMRI patterns
are unlikely to be driven by eye movements.

Behavioral performance

Figure 4A plots the average detection sensitivity (d0)
in each attention condition and differences between
conditions. In focal cue trials, uncued sensitivity (d0)
was near chance (M ¼�0.09), whereas d0 for the focal
cued stimulus was moderately high (M ¼ 1.74). The
mean difference between focal cued and uncued d0was
1.83 (SEM ¼ 0.11), t(5)¼ 16.7, p , 0.001; 95% CI of
bootstrapped differences ¼ [1.47, 2.10]. This indicates
that observers successfully responded to only the focal
cued stimulus. Sensitivity in the distributed cue
condition was essentially equal to the focal cued
condition (M ¼ 1.74), and the mean difference of
�0.006 was not reliable (SEM ¼ 0.09), t(5)¼ 0.06, p¼
0.92; 95% CI of bootstrapped differences ¼ [�0.32,
0.28]. Thus, there was no cost to dividing attention on
behavioral sensitivity.

fMRI responses

In this design, the measured BOLD responses are
primarily driven by the dynamic noise patches, rather
than the brief and faint targets embedded in them.

Similarly, in Experiment 1, the BOLD responses were
likely driven by the pedestal Gabors more than the
targets superimposed on them. As expected, BOLD
responses in Experiment 2 were larger: The mean V1
response to focal cued stimuli was 0.85% signal change,
compared with 0.41% in Experiment 1. This is probably
because the dynamic noise patches were relatively long
in duration and rich in spatial frequency content. But
as shown below, the attentional effects were roughly
equal in magnitude across the two experiments, likely
because visual spatial attention effects measured with
fMRI are additive and relatively stimulus independent
(e.g., Buracas & Boynton, 2007; Murray, 2008; Pestilli
et al., 2011).

We assessed the same two attentional effects on these
BOLD responses as before but in separate retinotopic
areas V1 through V4 (Figure 5). To maximize
sensitivity, we also analyzed a combined ROI contain-

Figure 4. Behavioral (left column) and fMRI (right column) data

from Experiment 2. The conditions referred to in the plots are

illustrated in the legend at the top. (A) Behavioral accuracy (d0)

in each cue condition. (B) BOLD responses in a combined ROI

that encompasses all of V1–V4. (C) Differences in d0 between

two pairs of conditions. (D) Differences in BOLD responses

between the same pairs of conditions in the combined V1–V4

ROI. Solid points are data; open points are predictions of the

switching model for the distributed cue condition. All error bars

indicate 61 SEM.
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ing voxels selected by the localizer scans in all four
areas (Figure 4B and 4D).
Selective attention: In the combined ROI (V1 through
V4), the mean response amplitude was 0.79% signal
change for focal cued and 0.69% for uncued stimuli
(mean difference¼ 0.097; SEM¼ 0.023), t(5)¼ 4.28, p¼
0.004. The values for each individual retinotopic area
are plotted in Figure 5 and listed in Table 2. All areas
demonstrated a significant effect of selective attention
(focal cued . uncued).
Divided attention: We evaluated the divided attention
effect as the difference in BOLD response between
attended stimuli in the focal cued condition and
attended stimuli in the divided-attention condition. In
the combined V1–V4 ROI, the mean response ampli-
tude in the distributed cue condition was 0.76% signal
change, not significantly lower than the focal cued
response of 0.79 (mean difference¼ 0.025; SEM ¼

0.03), t(5) , 1. The divided attention effect was not
reliably greater than 0 in any individual visual area
(Figure 5; Table 2). A two-way repeated-measures
analysis of variance with factors visual area (V1–V4)
and attention condition (focal cued vs. distributed
cued) revealed no main effect of attention condition,
F(1) ¼ 1.10, p ¼ 0.34; an effect of visual area, F(3) ¼
3.28, p¼ 0.05; and a nearly significant interaction, F(3)
¼ 3.14, p ¼ 0.06. The interaction may be driven by the
apparently larger divided attention effect in area V4,
but neither that interaction nor the effect in V4 alone
reached significance (see Table 2).

Modeling an effect of divided attention

As in Experiment 1, we simulated responses in the
distributed cue condition under the all-or-none
switching model by assuming that half the time

Figure 5. BOLD data from Experiment 2 in individual retinotopic areas. (A) Mean BOLD responses in each cue condition, with a

separate panel for each retinotopic area. (B) Mean differences in BOLD responses between two pairs of conditions, in each

retinotopic area. Solid points are data; open points are predictions of the switching model for the divided attention condition. All

error bars indicate 61 SEM.

Area

Focal cued – uncued Focal cued – distributed cued

KMean 95% CI t(5) p Mean 95% CI t(5) p

V1 0.07 [0.02, 0.15] 2.7 0.022 0.02 [�0.06, 0.09] 0.79 0.46 1.00

V2 0.09 [0.05, 0.16] 3.88 0.006 0.03 [�0.04, 0.10] 1.12 0.31 0.96

V3 0.10 [0.05, 0.15] 4.98 0.002 0.02 [�0.05, 0.09] 0.79 0.47 1.01

V4 0.16 [0.09, 0.23] 5.25 0.003 0.04 [�0.04, 0.13] 1.39 0.22 0.99

V1–V4 0.10 [0.05, 0.16] 4.28 0.004 0.03 [�0.05, 0.09] 0.91 0.4 0.99

Table 2. Summary of fMRI data in Experiment 2, showing statistics for differences between BOLD responses (in units of percentage
signal change) for two pairs of conditions. Notes: For the focal cued – uncued difference (selective attention effect), p values are one
tailed. Ninety-five percent confidence intervals (CIs) are based on bootstrapping, corrected according to Efron (1987). The final
column lists the likelihood ratios (K) for the two competing models of responses in the distributed cue condition.
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observers attend only to the left and half the time only
to the right. Given that the target stimuli were
presented briefly (SD of Gaussian envelope¼ 33 ms)
and that they appeared simultaneously when present on
both sides, it is unlikely that observers would have been
able to process both sides by switching attention from
one side to the other within one trial. The all-or-none
switching model therefore predicts behavioral response
rates and BOLD response magnitudes midway between
those in the focal cued and uncued conditions (given
that there were only two stimulus locations).

For behavioral accuracy, the mean predicted dis-
tributed cue d0 was 0.96, significantly lower than the
measured value of 1.73, t(5)¼ 9.78, p , 0.001; 95% CI
of bootstrapped differences¼ [0.46, 1.08]. We therefore
rule out the switching model for behavioral sensitivity.

For BOLD responses, the differences between the
measured and predicted values (open symbols in Figure
5A) were not statistically significant in any visual area
(all t-test p values � 0.3; all 95% CIs include 0).
Therefore, although we found no significant reduction
in BOLD response strength for distributed cued
compared with focal cued conditions, given the signal-
to-noise ratios in our data, we cannot rule out the
possibility that there was a divided attention effect as
predicted by the switching model. To determine
whether we are simply suffering from a lack of power in
our data set, we conducted a power analysis by
simulating rerunning the experiment, redrawing a
variable N number of observers, with replacement,
from our actual set of six. Even with 48 simulated
observers (eight times our sample size), there would be
a probability of only 0.30 for rejecting the switching
model hypothesis for V1 activity under divided
attention (and only 0.55 with 100 observers). The
power for rejecting the null hypothesis that there is no
divided attention effect (focal cued¼ distributed)
hardly better: 0.33 with 48 observers (0.59 with 100).
This suggests that we would have gained little by
increasing our sample size within the limits of what is
feasible.

We also took a Bayesian approach to compute
likelihood ratios for two models of BOLD responses in
the distributed attention condition, as in Experiment 1:

M1: Unlimited-capacity parallel processing: BOLD
responses in the distributed cue condition have the
same mean as responses to focal cued stimuli.
M2: All-or-none serial switching: BOLD responses in
the distributed cue have a mean halfway between
focal cued and uncued responses.

These two models were formalized in the same way as
in Experiment 1, using a pooled standard deviation for
both (the mean of standard deviations of focal cued
and uncued responses). Then we computed the
likelihood ratio, K¼ p(D jM1)/p(D jM2) for the entire

data set (see Table 2, right column). Assuming flat
priors, K is equivalent to the Bayes factor, or the ratio
of the posterior probabilities for each model given the
data.

The likelihood ratios were equivocal in all areas V1–
V4, being near 1. This reflects the fact that mean BOLD
responses in the distributed cue attention were roughly
midway between the focal cued responses and the
switching model predictions. Therefore, there may be
some reduction of BOLD responses during divided
attention in this task but not as large as would be
predicted if only one stimulus were attended at a time.
The behavioral data showed no cost of divided
attention, however, clearly ruling out the all-or-none
switching model and favoring independent parallel
processing of the two locations.

Discussion

Summary

Behavioral and neuroimaging data from two exper-
iments with distinct behavioral paradigms supported
these three hypotheses: (a) when observers are cued to
attend selectively to one peripheral location, behavioral
and neuronal sensitivity are higher at that location than
others; (b) observers can detect multiple targets defined
by simple features in parallel with no cost; (c)
correspondingly, early visual cortex processes multiple
simple stimuli with no amplitude reduction during
divided attention, compared with focal attention. The
first two findings have been demonstrated previously,
but the third stands in contrast to all previous fMRI
studies of divided visual attention, all of which used
more complex stimuli and tasks.

To assess these findings, we compared our data to a
specific model that assumes it is not possible to divide
attention across multiple sources without a loss of
sensitivity. The attentional switching hypothesis as-
sumes that attention can be devoted to only a single
location during any given trial of the distributed cue
condition, allowing an all-or-none switching model to
predict both behavioral accuracy and BOLD responses
in the distributed cue condition, based on the focal cued
and uncued conditions. Null-hypothesis tests could not
reliably differentiate our BOLD data from the predic-
tions of the all-or-none switching model. Power
analyses suggest that the potential differences are so
small that impractically large data sets (N . 50) would
be required to detect them with such statistical tests. A
Bayesian analysis of likelihood ratios favored the
hypothesis of no divided attention effect in Experiment
1 but equally favored the two models in Experiment 2.
In both experiments, however, the behavioral data
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clearly rule out the all-or-none switching model, which
predicts large costs of divided attention that we did not
observe. Altogether, our data lead us to the conclusion
that the stimuli in our detection tasks can be processed
in parallel at multiple retinal locations with little or no
cost.

Our experiments revealed consistent results from two
different behavioral paradigms: The first used a search
task with brief stimuli appearing at four possible
locations and evaluated activity in area V1. The second
experiment generalized the findings with a dual-task
design and long-duration noise patches at only two
locations and with measurements from areas V1–V4. In
both experiments, the task was to report the presence
or absence of simple Gabor patches with constant
features. We believe these common properties of our
two tasks are important to understand why our study,
unlike most previous, found no effects of divided
attention.

Comparison with previous studies of divided
spatial attention

Divided attention has been strongly associated with
decreased behavioral performance (Braun, 1998; Car-
rasco, 2011; Harris et al., 2004; Kahneman, 1973).
However, a collection of work has shown that
processing of multiple sources is unlimited in capacity
when the attention-guiding task and relevant stimuli
are fairly simple (Bonnel et al., 1992; Busey & Palmer,
2008; Huang & Pashler, 2005; Palmer, 1994; Scharff et
al., 2011). Consistent with these studies, we found that
dividing attention across locations containing oriented
Gabor patches had no effect on behavioral sensitivity
relative to focusing attention on a single-stimulus
location. Note that in the search task of Experiment 1,
we may have predicted a divided attention cost in
accuracy because of statistical uncertainty at the
decision stage, as Chen and Seidemann (2012) found.
The small accuracy cost we did find was not statistically
significant, which could be due to subtle differences in
our design or a lack of power. Nonetheless, our
imaging results are consistent with those of Chen and
Seidemann (2012), who found no effect of divided
attention on macaque V1 optical imaging responses.

There is a disparity between our physiological results
and those of earlier fMRI studies that found reduced
V1 responses during divided attention. McMains and
Somers (2005) and N. Müller et al. (2003) used stimuli
that are qualitatively complex (color and shape
conjunctions; letters) relative to the tuning properties of
V1 neurons. In contrast, the oriented Gabor patches
used in the current experiment match the tuning
properties of early cortical neurons, which may be
relevant (see the following section for more discussion).

Moreover, behavioral evidence suggests that detection
of color and shape conjunctions is sometimes subject to
capacity limitations (e.g., Treisman & Gelade, 1980).

McMains and Somers (2005) used letter stimuli.
Although there are examples of unlimited capacity
processing of letters (e.g., Eriksen & Spencer, 1969;
Pashler & Badgio, 1987), there are also cases in which
letters have shown evidence of limited capacity (Kleiss
& Lane, 1986; Schneider & Shiffrin, 1977). We propose
that the differences in stimulus class between our
experiment and those of McMains and Somers (2005)
and N. Müller et al. (2003) account for the differences
in V1 responses.

Scalf and Beck (2010) reported that divided attention
reduces responses in human area V4 in a visual search
task with Gabor patches. However, those targets were
defined by conjunctions of three features (orientation,
color, and spatial frequency) and were presented amidst
distractors with partially matching features. The
attentional demands of this task differ from ours, in
which targets never shared any features with the
background or distractors (e.g., Treisman & Gelade,
1980).

Pestilli et al. (2011) reported divided attention effects
using a change detection task. Gratings appeared
within each visual quadrant, each with a different
contrast on a trial-to-trial basis. Across two presenta-
tion intervals, one of the gratings (the target) changed
contrast. The observer’s task was to report which
interval contained the higher contrast at the target
location. A postcue always indicated target location
after stimulus offset. In this case, the rule for detecting
a target was also dependent on the pedestal(s). In our
simple detection tasks, the target stimulus never
changes (vertical Gabor patches in Experiment 1;
horizontal Gabor patches in Experiment 2). Change
detection tasks produce large set-size effects on
behavioral performance (Scott-Brown & Orbach, 1998)
relative to visual search. The main hypotheses for why
this phenomenon occurs involve limits on memory and/
or decision. First, it is necessary to encode and retain a
memory of an initial display in order to detect a change
in a subsequent display. In addition, a memory of a first
display must be not only maintained and retrieved but
also compared with a second display (decision). Both
encoding processes (e.g., Irwin, 1992; Rensink, 2002)
and decision processes (Hollingworth, 2003; Scott-
Brown, Baker, & Orbach, 2000) have been found to
affect change detection. Obviously, these processes are
not mutually exclusive. We propose that the involve-
ment of memory processes imposed by change detec-
tion tasks, which likely played a minimal role in our
tasks, contributed to the effects on V1 fMRI responses
in Pestilli et al. (2011).

Note that in a subset of trials in the study by Pestilli
et al. (2011), the target pedestal contrast was 0%. This
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means that the task on those trials was effectively to
report which interval contained a grating as opposed to
nothing, similar to our yes/no detection tasks. In the
plot of those behavioral data, it appears that there may
be a marginally significant difference between discrim-
ination thresholds in distributed cue compared with
focal cue trials. If that were significant, it would be
inconsistent with our finding of no divided attention
effect on accuracy in our yes/no grating detection tasks.
The model fits to Pestilli et al.’s fMRI data predict a
difference between focal- and distributed cue activity at
zero pedestal contrast, which would also differ from
our findings. We can speculate that other differences in
stimulus and task account for these possible differences
in results (specifically, Pestilli et al.’s use of demanding
change detection task with different stimuli at four
locations and unpredictable contrast levels).

In summary, the effects of divided spatial attention
on both behavior and cortical responses are dependent
on the nature of the stimuli and task. Divided attention
impairs performance and reduces cortical responses
when the stimuli are relatively complex, when variable
features or feature conjunctions define the targets, or
when the task requires fine discriminations or places
demands on memory. There are no such divided
attention effects when the target stimuli are simple and
constant and the task is as simple as reporting the
presence or absence of an item that differs from its
background in a predictable way, as in the two
experiments presented here. Note that there may also
be an important distinction between endogenous
(voluntary, sustained) spatial attention, which we
studied here, and exogenous (stimulus-driven, tran-
sient) spatial attention. Unlike with divided endoge-
nous attention, observers can perform difficult
discrimination or identification tasks with no cost when
multiple locations are exogenously cued at the same
time (Bay & Wyble, 2014; White, Lunau, & Carrasco,
2014).

Models for behavioral and neural effects of
divided attention

Our results relate to, but cannot resolve, two
questions that have been long debated in the study of
visual attention (Eckstein, Peterson, Pham, & Droll,
2009). First, does attention affect stimulus representa-
tions directly, or does it affect decision processes? On
one hand, theories of ‘‘limited resources’’ in perceptual
processing argue that attended stimuli are encoded with
greater fidelity or sensitivity than unattended stimuli
(e.g., Carrasco, 2011; Desimone & Duncan, 1995;
Kahneman, 1973; Posner, 1980). On the other hand,
statistical decision theories argue that attention does
not necessarily affect initial stimulus encoding but gives

attended stimuli more weight in later decision stages, in
which noise and uncertainty also limit behavioral
accuracy (Eckstein et al., 2009; Palmer, 1994; Palmer et
al., 1993; Shaw, 1982; Sperling & Dosher, 1986).

The second question is, How can we link attentional
effects on neuronal measures to attentional effects on
behavioral measures? The simplest linking hypothesis
for behavioral and fMRI data like ours is that an
increase in the mean response in the visual cortex
reflects an increase in the signal-to-noise ratio of the
relevant variable upon which the perceptual decision is
based (Boynton, Demb, Glover, & Heeger, 1999;
Buracas, Fine, & Boynton, 2005; Ress et al., 2000;
Shadlen & Newsome, 1998). This hypothesis is
supported by the fact that our behavioral results mirror
our neuroimaging results: Responses to focally at-
tended stimuli are roughly equal to responses during
divided attention, and responses to ignored stimuli are
lower.

If we accept this simple linking hypothesis, we would
then have an answer to the first question: The effect of
selective attention in our task (difference in responses to
focally attended and ignored stimuli) is not a sign of
limited resources in perceptual processing, because all
the stimuli can be perceptually encoded simultaneously
with no cost. Indeed, several previous studies have
provided explanations for attention effects in visual
cortex that do not rely on the concept of limited
resources. Chen and Seidemann (2012), who reported
V1 optical imaging results that mirror our fMRI
results, found a significant selective attention effect that
began before stimulus onset and did not reflect a
modulation of stimulus encoding strength. The authors
suggested that effect was instead a form of ‘‘spatial
gating’’ that biases competition at later processing
stages in favor of attended stimuli. Similarly, Pestilli et
al. (2011) concluded that the best explanation for their
observed behavioral advantage in the focused attention
condition was enhanced ‘‘selection efficiency’’ of the
relevant stimulus due to a baseline shift in its response.
In other words, precueing the target location improved
performance primarily because it allowed for better
exclusion of irrelevant signals from the decision process
(or working memory, as the authors acknowledge),
rather than increased precision of the target’s repre-
sentation itself. A related electroencephalogram study
found that during a task that required classifying the
orientations of simple stimuli at one or two locations,
dividing attention had little effect on initial stimulus
encoding but had large detrimental effects at later
stages corresponding to the integration of new sensory
evidence into decision variables (Wyart, Myers, &
Summerfield, 2015).

Altogether, these results paint a more complex
picture of how focused and divided spatial attention
affect behavioral and neuronal responses. In fact, the
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studies by Chen and Seidemann (2012) and Pestilli et al.
(2011) cast some doubt on the simple linking hypoth-
esis that we provisionally accepted two paragraphs ago.
They question the assumption that an effect of spatial
attention on mean neuronal responses in a particular
region of visual cortex implies a change in the quality of
the sensory representation at that stage. The responses
to (all) attended stimuli may be greater than responses
to ignored stimuli by an additive and stimulus-
independent factor (see also Buracas & Boynton, 2007;
Murray, 2008; Pestilli et al., 2011), which functions to
give more weight to relevant stimuli in later stages of
evidence accumulation and decision making.

Our results are consistent with that broader conclu-
sion but cannot on their own distinguish between
different mechanisms of spatial attention nor possible
linking hypotheses between the BOLD response and
behavior. See Eckstein et al. (2009) for a detailed review
of the challenges these questions pose. We do, however,
show for the first time with human neuroimaging that
observers are able to divide spatial attention without
dampening either behavioral accuracy or BOLD
responses in visual cortex. These results cast doubt on
the strong view that spatial attention functions as a
single ‘‘spotlight’’ that devotes limited processing
resources to relevant stimuli. Rather, our results
support a hypothesis of unlimited capacity parallel
processing. But as we reviewed in the previous section,
the mechanism of attention appears to depend strongly
on the particular stimuli and task demands.

We further propose that observers can successfully
divide attention without cost only if there is an
independence of neural processing across regions of
visual cortex tuned to the relevant areas of visual space.
The degree to which those processes are independent
could vary with the distance between attended loca-
tions. We designed our stimuli to be widely separated to
avoid issues such as crowding and lateral masking. It is
possible that divided attention effects depend further
on whether the attended locations are in separate
hemifields. An across-hemifield advantage for divided
attention has been reported for behavioral performance
and neuronal responses (Alvarez, Gill, & Cavanagh,
2012; Awh & Pashler, 2000; Scalf & Beck, 2010; Walter,
Keitel, & Müller, 2015). In our second experiment, the
relevant locations were always in opposite hemifields,
which might partially account for the lack of divided
attention effect. In the first experiment, however, there
were two relevant locations per hemifield, and attend-
ing to all of them caused no reduction in behavioral
accuracy or BOLD response.

Moreover, the independent processing we found
during divided attention in V1 is plausibly restricted to
relatively simple stimuli such as oriented Gabors and
gratings, which characterize the spatial response
properties of V1 neurons (Heeger, 1992; Movshon,

Thompson, & Tolhurst, 1978). V1 neuronal responses
may provide the underlying substrate required for
performing such detection tasks. Previous work has
shown that fMRI responses in visual areas demon-
strating preference for specific stimulus features (such
as MTþ and motion) increase when tasks are per-
formed requiring the analysis of those features (speed
or direction discrimination), implicating those areas as
providing possible neural bases for the performance of
specific visual tasks (Beauchamp, Cox, & DeYoe, 1997;
Corbetta, Miezin, Dobmeyer, Shulman, & Petersen,
1990, 1991; Runeson, Boynton, & Murray, 2013). Our
second experiment generalized the basic findings to
areas V2, V3, and V4. Selective attention effects (focal
cued vs. uncued) increased across the cortical hierar-
chy, but in no area was the divided attention effect
(focal cued vs. distributed) significantly greater than
zero.

Conclusion

Using two detection tasks with targets defined by
simple visual features, we found evidence that fMRI
responses in retinotopic visual cortex are not affected
by the division of spatial attention. This is in contrast
to previous fMRI studies showing signal reductions
during divided compared with focused attention. We
attribute our finding to independent processing across
space by neurons in early visual cortex tuned to the
features defining our stimuli. The use of simple (but
perceptually challenging) visual tasks minimized the
involvement of memory or decision processes, which
might play a role in tasks that yield large divided
attention effects. In short, our results are consistent
with unlimited capacity processing of simple features in
visual cortex.

Keywords: divided attention, fMRI, functional
imaging, primary visual cortex, spatial attention
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