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ABSTRACT  

The visual system can encode many stimuli across the visual field simultaneously, but 

the number of objects that can be fully identified in parallel is limited. At the extreme, 

some objects might have to be identified serially. One useful tool for distinguishing 

parallel from serial processing is the redundant target paradigm, which compares 

responses to displays containing one target to displays containing two targets. Many 

parallel models predict a positive redundant target effect: faster correct responses to two 

targets. Here we revisit the redundant target paradigm by developing and testing 

predictions for a standard self-terminating serial model that accounts for the accuracy as 

well as the speed of each response. Surprisingly, it predicts slower responses to two-target 

displays than one-target displays. To test that prediction, we conducted three 

experiments that each measured performance for three different judgments of written 

words: color detection (detecting colored letters), lexical decision (detecting real words 

among pseudowords), and semantic categorization (detecting nouns that refer to living 

things). In all the experiments, only the color detection task yielded a positive redundant 

target effect, while the lexical and semantic tasks yielded zero or negative effects. These 

results are consistent with low-level features (color) for two stimuli being processed in 

parallel, while the meanings of two words are processed serially. Altogether, this study 

informs models of reading and furthers the development of general theories of response 

time that include errors.  

 

Key words: redundant targets; divided attention; serial and parallel processing; response 

time; visual word recognition.  
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The study of perception has long been animated by the question of whether 

multiple stimuli can be processed in parallel, or whether strict processing capacity limits 

require serial processing. Here we re-examine that question in the context of visual word 

recognition: can two words be recognized simultaneously? This is an important question 

because competing models of natural reading disagree as to whether multiple words are 

processed in parallel during each gaze fixation (Engbert et al., 2005; Reichle et al., 2006; 

Reilly & Radach, 2006; Snell & Grainger, 2019b). To investigate whether it is possible to 

recognize two words simultaneously, we use the redundant target paradigm. This 

experimental paradigm differs from natural reading, assessing instead how well 

participants can process two words at once when they are encouraged to try. We compare 

task performance to the predictions of serial and parallel processing. This complements 

other approaches that use dual-tasks or measure spatial attention effects (Johnson et al., 

2022; White et al., 2018, 2020; White, Palmer, et al., 2019). 

Fundamentals of redundant target effects 

The redundant target paradigm grew out of a larger visual search literature to 

investigate whether observers can process multiple stimuli presented simultaneously at 

different visual field positions (van der Heijden, 1975). The observer’s task is to view a 

display and report the presence or absence of stimuli that belong to a target category. 

Non-target stimuli are termed “distractors.” On some trials, one target is presented. On 

other trials, multiple targets are presented simultaneously – that is, the display contains 

redundant targets. The redundant target effect is a speeding of correct response times on 

trials with multiple targets compared to trials with a single target. Such an effect, also 

termed a “redundancy gain,” can be taken as evidence that the targets were processed in 

parallel.  

Studies that have used the redundant target paradigm can be divided into two 

broad categories. Studies in the first category seek to distinguish between a parallel 
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model and a serial model (van der Heijden, 1975). They compare response times between 

displays that consist of two (or more) targets, versus displays that contain one target and 

no other stimuli. Studies in the second category seek to distinguish between two flavors 

of parallel models: those with separate activations caused by each stimulus, versus those 

with interactive “coactivations” (C. W. Eriksen et al., 1989; Miller, 1982; Mordkoff & 

Yantis, 1991). To do so, response times are compared between displays that contain two 

targets and displays that contain one target and one distractor. These “mixed” trials are 

not useful for testing the serial model, which is the focus of the present study.   

Therefore, we focus on the comparison between displays with a single target 

presented alone and displays with two targets. As shown in Figure 1, contrasting 

predictions for correct response time arise from a standard unlimited-capacity parallel 

model and a standard serial model. They are called “standard” models because of strong 

assumptions about the independence of the processes for each stimulus. Both standard 

models assume that search is self-terminating: the observer responds as soon as they detect 

a target. The parallel model assumes that when two targets are present, they are 

independently processed in separate channels that race to produce the response. The 

completion time of each process is variable across trials. On two-target trials, the response 

time is determined by the faster of the two processes, so the observer is faster on average 

than when only one target is present (Raab, 1962). Thus, the parallel model predicts a 

positive redundant target effect: a speeding of correct responses.  

The standard serial model, in contrast, assumes that one stimulus is processed at 

a time (Townsend & Nozawa, 1995; van der Heijden, 1975). If the first target of two 

simultaneously presented targets is correctly identified, then the response time is on 

average the same as when only one target is present—the redundant target has no effect 

on performance. Previous descriptions of this serial model stop there; but as we explain 

in our new theory section below, a serial model that incorporates errors predicts a slowing 
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of correct response times if the first target to be processed is misidentified, and search 

continues to process the second target correctly.  

 
Figure 1: Diagram of a standard parallel and a standard serial model processing displays 
containing one target (set size 1) or two targets (set size 2). The parallel model predicts faster 
correct responses for set size 2 because the response is triggered by whichever process 
happens to finish sooner. The serial model predicts either zero effect of set size, or a loss 
(slower responses to set size 2). 

Redundant target effects have been used to reject the standard serial model for 

processing simple visual features, such as detecting lights, discriminating colors, 

orientations, and motion directions (Corballis, 2002; Donkin et al., 2014; Egeth et al., 1989; 

Ridgway et al., 2008; Schwarz, 2006; Thornton & Gilden, 2001). Redundant target effects 

have also been found with auditory stimuli (e.g. (Schröter et al., 2007) and with bimodal 

stimuli (e.g. (Gondan et al., 2010; Hershenson, 1962). Face recognition has also been 

studied with redundant target effects (Fitousi, 2021).  

Letters are an interesting case, being the building block of words. Several studies 

have used tasks that require the participant to distinguish one target letter from other 

letters. When the task uses a “go-no/go” design—to press a button when a target is 

detected and otherwise make no response—there are positive redundant target effects 

(e.g. Grice & Reed, 1992; Mordkoff & Yantis, 1991; van der Heijden et al., 1983). That is 
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also true when the observer makes a vocal response ("yes" or "no"; van der Heijden, 1975). 

However, other studies have found no redundant target effect when the procedure is 

slightly different, such as requiring a choice response on each trial (Fournier & Eriksen, 

1990; Grice & Reed, 1992; van der Heijden et al., 1983). One possibility is that letters are 

processed in parallel, producing a positive redundant target effect, but that effect can be 

masked by later decision- or response-selection processes when the response rule is more 

complicated. In other words, if conditions increase the degree of limited capacity, then it 

can overcome the redundant target effect.  

Redundant target effects for word recognition tasks 

We now turn to the central topic of this article: redundant target effects for written 

words. Such effects could reveal the extent to which higher-level semantic or linguistic 

information about two stimuli can be processed in parallel. A handful of studies have 

gone down that road, with mixed results. They have differed in four important respects: 

whether the redundant targets in a single trial are identical words; whether the single-

target trials also contain a ‘filler’ stimulus; what the task is (semantic categorization vs. 

lexical decision), and how the subject responds (go/no-go vs. choice).  

We first summarize studies that used a lexical decision task, in which the targets 

are real English words and the distractors are meaningless pseudowords. In Mullin & 

Egeth (1989), words were presented above and below fixation. The task was to make a 

go/no-go response to the presence of a word. Trials either contained 1 pseudoword, 1 real 

word, 2 pseudowords, or 2 real words (a “pure” design with no mixed pairs). In one 

experiment (their Experiment 2), the redundant targets were identical words. In that case, 

there was a significant redundant target facilitation of response times. A similar result 

was reported by Egeth et al., (1989), and, with words present to the left and right of 

fixation, by Hasbrooke & Chiarello (1998) and Mohr and colleagues (Mohr et al., 1994, 

1996). However, a redundant target effect for identical words might be explained by 
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facilitation at a sub-lexical level (Abrams & Greenwald, 2000)1. Mullin & Egeth (1989)’s 

third experiment included a condition with two real word targets that were different 

from each other (also in a lexical decision task). In that experiment, the redundant target 

effect was significantly negative, meaning that response times were slowed by the 

addition of a second target. 

A second set of word recognition studies have used semantic categorization tasks. 

In Mullin and Egeth (1989)’s first and fourth experiments, one or two words were 

presented above and below fixation. The task was a go/no-go response to the presence of 

a word belonging to a given semantic category (e.g., ‘animals’). Notably, each of the four 

categories contained only 5 words. In one experiment, when two targets were presented 

they were identical words, and in the other experiment the two targets were different 

words. There was no significant redundant target effect in either experiment, consistent 

with the serial model. 

The second relevant study using semantic categorization was by Shepherdson & 

Miller (2014). We focus on their Experiment 3. Stimuli were presented to the left and right 

of fixation. On each trial, the subject had to make a yes/no response to report the presence 

of a word belonging to a target semantic category. Most importantly, the “single-target” 

trials also contained a "filler" stimulus that was a pseudo-word. They found an advantage 

for the redundant target condition compared to this modified baseline. Interpreting this 

experiment is difficult. The critical question is whether a serial, self-terminating model 

predicts no effect between these conditions. Such a prediction holds only if the target is 

always processed first by the serial process and the filler pseudoword is never processed 

first, which seems unlikely. Thus, we conclude this experiment should be considered 

along with experiments that used a mixed-trial baseline to test co-activation models and 

not as a test of the serial, self-terminating model.  

 
1 Nonetheless, presenting copies of the same word across the field provides a redundancy gain that might help  
patients with macular degeneration to read, with rapid serial visual presentation (Snell et al., 2022) 
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In summary, the effects of redundant targets in word recognition tasks require 

further investigation. The presence of a redundant target effect might depend on the 

subject’s task (lexical decision or semantic categorization), the mode of response (go/no-

go or forced-choice), and on whether the experiment includes trials in which a target is 

paired with a distractor. In the new experiments reported below, we investigate all those 

factors, and compare lexical and semantic tasks to a font color task. In doing so we also 

test new models of parallel and serial processing that consider both response time and 

accuracy.   

    

Response time and accuracy in redundant target effects 

Most of the redundant target studies reviewed above focused on only correct 

response times and use tasks in which accuracy is near ceiling. Other studies have 

focused on accuracy, for instance in the context of spatial summation (e.g., Robson & 

Graham, 1981; Verghese & Stone, 1995). One important study compared redundant target 

effects on accuracy and response time (Mordkoff & Egeth, 1993). This work has shown 

that typical parallel models predict positive redundant target effects for accuracy as well 

as response time.  

As shown in the following section on our new theory, serial processing of the 

individual stimuli can lead to a negative effect of redundant targets on response time. This 

hinges on the possibility of errors: if the first target to be processed is misidentified as a 

distractor, then search continues, and the second target may be correctly identified. Those 

correct responses increase the mean response time for two-target displays compared to 

correct responses to single target displays. Thus, our new theory explicitly considers the 

accuracy of each stimulus recognition process when predicting response times.  
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New Theory 
 

The new theory generalizes previous models of pure response time by adding the 

possibility of errors (misclassifying targets as distractors or vice versa). The Appendix 

contains full mathematical descriptions of three classes of models. Here we describe them 

in intuitive terms and emphasize the qualitative redundant target effects that they each 

predict.  

Consider the standard self-terminating serial model developed for response time 

(Townsend & Nozawa, 1995). Like others of its type, it assumes discrete component 

processes for each stimulus. In addition, it allows time for residual processes before a 

response is made that do not depend on the stimulus. This model has been called 

standard because it includes a number of independence properties (see Appendix). We 

add to this model the possibility of an error and additional independence assumptions 

concerning the errors and the relationship between error and response time.  

Our goal in building this new theory is to compare the qualitative predictions of 

the various models: whether they predict positive, negative, or zero redundant target 

effects on response time and accuracy. Our goal is not to quantitatively fit models to our 

data; that is a larger endeavor (never before attempted for redundant target effects) which 

we leave for the future. For now, it is sufficient to generate qualitative predictions that 

allow experimental data to rule out some models.  

Figure 2 illustrates the typical range of predicted redundant target effects for each 

class of model. The standard serial model always predicts negative effects. The unlimited-

capacity parallel model always predicts positive effects. The fixed-capacity parallel 

model can predict either negative or positive effects. These results of the new theory are 

described in more detail in the following paragraphs.  
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Figure 2: Model predictions. For each type of model, we plot the typical range of redundant 
target effects on correct response times. For all models we assume that for single-target trials, 
errors occur on 5% of trials and the mean correct response time is 800 ms. Each model’s range 
encompasses the smallest and largest effects that we could generate with the parameters 
described in the Appendix.   

 

Predictions of Our Serial Model 

The most important result concerns the predictions made by our new standard 

self-terminating serial model with errors. Specifically, it predicts a negative redundant 

target effect. This is unlike the corresponding pure response time model that predicts no 

effect of redundant targets. The source of this different result has to do with what 

happens when there is an error in processing the first stimulus; if the first target to be 

processed is mis-identified as a distractor, processing continues for the second stimulus. 

If this second target is correctly identified, then this correct response time is included in 

the analysis with the other trials in which the first target was processed correctly. Thus, 

the correct response times for the redundant target condition are a mixture of two cases: 
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those trials in which the first target was correctly identified and the response was made 

quickly, and those trials in which the first target was not correctly identified and 

processing continued to the second target. This new result makes the serial model with 

errors more distinctive from the parallel models, in terms of correct response times. The 

predictions for errors are discussed below.  

Quantitatively, this model’s predicted redundant target effect is given by Equation 

5 in the Appendix, which is repeated here:  

𝜇!,#$%%&#! − 𝜇!!,#$%%&#! = −
(1 − 𝑝!)
(2 − 𝑝!)

𝐸*𝑫!,'(#$%%&#!,. 

The redundant target effect is the difference between the mean correct response time for 

a single target (µt,correct) and the mean correct response time for two targets (µtt,correct). This 

effect depends on only two factors, the probability correct on single-target trials, pt, and 

the mean component processing time for a single target when the participant makes an 

error (a ‘miss’ response), 𝐸*𝑫!,#$%%&#!,. 

 Crucially, the serial model always predicts a negative redundant target effect. An 

illustration of this prediction is in Figure 2.  For this illustration, we assume that for 

single-target trials, accuracy pt is 0.95 (5% errors) and the mean correct response time is 

800 ms. The upper end of the range is predicted with the assumption that the mean 

component processing time for an error is equal to the mean component processing time 

for a correct response. The lower end of the range is predicted with the assumption that 

the mean component processing time for an error is twice that for a correct response. See 

the Appendix for more detail.  

Predictions of Our Unlimited-Capacity, Parallel Model 

 Our second result concerns the standard, self-terminating, unlimited-capacity 

parallel model with errors. The corresponding model without errors predicts a positive 

redundant target effect. We show that this generalizes to models with errors. Errors can 
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reduce the size of the effect, but it always remains positive. Thus, there remains a sharp 

contrast in the predictions for this parallel model and the standard self-terminating serial 

model. 

 The predictions of this parallel model are given by Equation 11 in the Appendix:  

𝜇!,#$%%&#! − 𝜇!!,#$%%&#! = .
	1

2 − 𝑝!
0𝐸*𝑫!,#$%%&#!, − .

𝑝!
2 − 𝑝!

0 𝐸*min4𝑫!!,#$%%&#! , 𝑫!",#$%%&#!6, 

Here, pt is the probability correct on single-target trials, E[Dt,correct] is the mean correct 

component processing time for a single target, and E[min{Dt1,correct, Dt2,correct}] is the mean of 

the minimum of the two component processing times when two targets are presented 

and judged correctly. 

 The predicted effect is always positive. This is primarily because the model’s 

response to two targets is driven by whichever of the two stimulus processes finishes 

first, hence the “min” function in the equation above. On average this is faster than the 

response to a single target. The equation also makes clear why the predicted effect is 

always positive: it is the difference between two products, and the first is always larger. 

This must be the case, as is clear when examining each part of the two products 

separately. First: 

.
	1

2 − 𝑝!
0 ≥ 	.

𝑝!
2 − 𝑝!

0 

because 0≤pt≤1. Second:  

𝐸*𝑫!,#$%%&#!, > 	𝐸*min4𝑫!!,#$%%&#! , 𝑫!",#$%%&#!6, 

because the mean difference between two identically distributed (non-negative) variables 

is always less than the mean of one of those variables alone.  

 An illustration of this prediction is the middle bar in Figure 2. For this illustration, 

we used predictions of two specific models described in the Appendix. The upper point 

is for a diffusion model with parameters that generate large redundant target effects. The 

lower point is for a linear ballistic accumulator model with parameters that generate 

relatively small redundant target effects. While not strict limits, these model outputs 
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illustrate the range of predictions from the standard, self-terminating, unlimited-capacity 

parallel model. They are always positive.  

 

Predictions of Our Fixed-Capacity, Parallel Models 

The parallel model that can most mimic a serial model is one that has limited 

capacity. The limited capacity slows processing when there are two stimuli and thus  

reduces and possibly eliminates the redundant target effect. Unfortunately, this model is 

so general that it does not make very specific predictions. Here, we consider a special case 

of the limited-capacity parallel model: the fixed-capacity, parallel model. The idea of 

fixed capacity is that a set of parallel processors extract the same total amount of 

information from multiple stimuli as they do from a single stimulus. Thus, splitting a 

fixed set of ‘resources’ between multiple stimuli introduces a cost. Most of the prior work 

with this model has been in the domain of accuracy (Scharff et al., 2011; Shaw, 1980; White 

et al., 2018).  

We investigated two special cases of self-terminating fixed-capacity parallel 

models in which we assume a particular stochastic process for each stimulus being 

processed. Predictions of these two special cases define the range of redundant target 

effects plotted in Figure 2 (rightmost bar). First, with a diffusion process of sensory 

evidence accumulation (Palmer et al., 2005), the model yields positive redundant target 

effects on correct response times, for all relevant parameter values (as well as a positive 

effect on accuracy). This prediction defines the upper end of the range of effects predicted 

by the fixed-capacity parallel model in Figure 2. However, with a linear ballistic 

accumulator process (Brown & Heathcote, 2008), the fixed-capacity, parallel model can 

predict a negative redundant target effect on correct response time (a slowing), despite a 

positive effect for accuracy. This is illustrated in Figure 2 by the lower end of the range of 

predicted effects for the fixed-capacity model. In essence, because of fixed capacity, the 

addition of a second target slows processing of both stimuli. Thus, among many parallel 
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models that generate positive response time effects of redundant targets, there are models 

with fixed-capacity limits that yield the opposite result.  

Thus, there is an asymmetry in using the redundant target paradigm to test the 

serial model and fixed-capacity, parallel models. All our models are assumed to be 

standard, self-terminating models. A positive redundant target effect rejects the serial 

model, but a negative redundant target effect does not reject all possible fixed-capacity, 

parallel models. Thus, the redundant target paradigm is a good test for rejecting both the 

serial model and the unlimited-capacity parallel model but not the fixed-capacity parallel 

model. Nevertheless, it is relevant to distinguishing serial and parallel models. Indeed, 

many experiments with simple feature tasks have used this test to rule out the standard 

serial model (e.g., van der Heijden, 1975).   

Predictions About Errors  

Our last result concerns the usefulness of models that incorporate errors. All of the 

models described above predict a positive redundant target effect on accuracy (that is, 

fewer errors on trials with 2 targets than on trials with 1 target). This is not a surprise for 

typical parallel models that have been investigated in summation experiments of 

accuracy alone (Graham et al., 1978). What is new is that this result also occurs for our 

serial model, even though that model predicts slower response times for two targets. The 

reason is that when two targets are present and processed sequentially, there are two 

chances to correctly detect target presence, so accuracy increases compared to when only 

1 target is present – even though doing so takes more time on average. While this result 

for errors does not distinguish between the serial and parallel models, it introduces a 

result that is specific to errors and that is not accounted for by pure response time models.  
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Summary of our experiments 

We conducted three experiments that differed in two factors. The first factor was 

how participants responded to the stimuli. “Go/No-Go” is a procedure that requires the 

participant to press a button if they see a target and to make no response if they see no 

targets. This is a common, simple procedure for redundant target effects. “Choice” is a 

procedure that requires the participant to press one of two buttons to categorize each 

stimulus display. This is the most common procedure in the larger visual search 

literature. As discussed above, some prior research suggests that a go/no-go procedure is 

more sensitive for detecting redundant target effects (Grice & Reed, 1992). Previous 

studies about word recognition have used a mix of go-no/go and choice procedures, so 

we used both in different experiments.  

The second factor we manipulated was whether the words presented on two-word 

trials were “correlated.” In the “correlated” design, the two words were either both 

targets or both distractors. In the “uncorrelated” design, there also were trials in which 

one target was paired with one distractor. The correlated design maximizes the fraction 

of trials that test the serial model (one target alone vs two targets), but introduces 

contingencies that might affect performance (Mordkoff & Yantis, 1991). The uncorrelated 

design requires more trials but is more typical in visual search generally. The inclusion 

of mixed trials might affect the participant’s strategy and encourage them to process both 

stimuli, thus we use it in Experiment 3 to compare to the correlated design. Altogether, 

these variations in procedure span the range of tasks used in prior redundant target 

studies. 

Notably, in all three experiments, when two words were present, they were always 

two different words. This differs from some previous redundant target experiments that 

used identical words on two-target trials (Mullin & Egeth, 1989) and might produce 

effects due to sub-lexical facilitation.  
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In each experiment, we also measured performance in three different tasks (color 

detection, lexical decision, and semantic categorization). The color task required 

participants to judge a low-level visual feature of the words, and served as a control 

condition for which we expected positive redundant target effects. The lexical decision task 

requires the subject to distinguish real English word targets from pseudoword 

distractors. The semantic categorization task requires categorizing words either as targets 

that belong to a category of “living things” and distractors that belong to a category of 

“non-living things”. The semantic and lexical tasks might tap into different levels of 

linguistic processing, and have both been used in prior redundant target studies (Egeth 

et al., 1989; Mullin & Egeth, 1989). In sum, within each of our three experiments, we carry 

out a side-by-side comparison of redundant target effects that arise in three tasks using 

the same stimuli. The tasks differ in which they require low-level color feature detection, 

lexical access, or semantic categorization. Altogether, this study includes over 184,000 

trials of data from a total of 257 participants.  

 

Experiment 1: Go/No-Go procedure with correlated stimuli 

Methods  

Participants: Participants were recruited from around the world using Prolific 

(www.prolific.co, accessed August 2021-May 2023). Participants gave informed consent 

in accordance with the Declaration of Helsinki and Barnard College’s Institutional 

Review Board. All participants indicated being fluent speakers who learned English as 

their first language, with no literacy difficulties, and normal or corrected-to-normal 

vision. For each task, we aimed to recruit an independent sample of 28 participants, half 

male and half female. That sample size was chosen on the basis of a power analysis of an 

independent pilot data set, seeking at least 95% power to detect a redundant target effect 

on response time of 15 ms.   

http://www.prolific.co/
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Experiment Task 
N 

recruited 
N 

excluded 
N 

included 
N 

Female 
Mean age 
[min max] 

1: Go/No-Go, 
correlated 

Color 30 2 28 13 32 [19 50] 
Lexical 28 0 28 12 32 [20 47] 

Semantic 28 0 28 14 30 [20 47] 

2: Choice, 
correlated 

Color 29 0 29 16 27 [18 50] 
Lexical 28 0 28 14 29 [19 48] 

Semantic 28 0 28 18 27 [19 50] 

3: Choice, 
uncorrelated 

Color 28 0 28 22 20 [18 24] 
Lexical 29 1 28 15 31 [20 48] 

Semantic 29 1 28 14 31 [20 48] 

Table 1: number of subjects in each experiment and task, as well as the ages in years of 
the included subjects.   

 
Table 1 indicates the number of subjects and exclusions for all experiments in the 

study. Across all experiments in this study, our criteria for exclusion were: overall 

proportion correct less than 0.6, or proportion correct  less than 0.5 in more than 1 block 

of 60 trials. In Experiment 1, two subjects in the color task were excluded for the latter 

reason: one of them had 3 blocks with accuracy less than 0.5, and the other had 4 such 

blocks (out of 10 blocks). This was a risk of the go/no-go task conducted over the web 

browser: if the participant gets distracted mid-block, the experiment carries on without 

them.  

Stimuli: We created and presented stimuli with PsychoPy 3 (Peirce et al., 2019), 

run through the web browser using Pavlovia (https://pavlovia.org/). Each stimulus size 

and position were defined as a fraction of the height of the participant’s screen; thus, the 

dimensions in degrees of visual angle likely varied across participants. Participants were 

asked to sit with their head roughly 1 arm’s length from their screen. A central black 

fixation cross, 4.5% of screen height in width, was present throughout each trial except 

during feedback. The stimuli consisted of letter strings, of length between 4 and 6 letters. 
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The word lists are described below and provided fully in the public data repository 

(https://osf.io/a9kqj/). They were drawn in Courier font, with the height of an “o” or “x” 

occupying 3.8% of the screen height. That is roughly 0.7 degrees visual angle on a typical 

laptop. The specific words (or pseudowords) and font color varied across tasks, as 

described below.  

Trial sequence: An example trial is illustrated in Figure 3A. Each trial began with 

just the fixation mark present for 750 ms. Then either 1 or 2 words were presented for 183 

ms. There were two possible word positions, centered horizontally and either just above 

or just below the fixation mark. The distance from the fixation mark to the center of each 

word was 10% of the screen height (roughly 1.8 degrees visual angle on a typical laptop 

at arm’s length). About two letter o’s would fit stacked vertically in the empty space 

between the screen center and the words.  

 
Figure 3: Stimuli and Design. (A) Example trial sequence with two color targets. (B) Examples 
of the trial types for the color task in Experiments 1 and 2. The text above each panel indicates the 
percentage of trials that were of that condition. “D” = distractor, “T” = target.   
 

The trials were evenly distributed between these 4 conditions: 1 target, 1 distractor, 

2 targets, and 2 distractors. Figure 3B illustrates examples of each trial type, and Table 2 
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lists the proportion of trials assigned to each combination of stimuli at the top and bottom 

locations. Each location could have no word (‘None’), a distractor word, or a target word. 

When just 1 word was present, it was equally likely to be in the top or bottom location. 

Unlike in Experiment 3, there were never any mixed pairs of 1 target and 1 distractor. 

Thus, in this experiment, the words in each display were “correlated,” meaning that 

when there were 2 words present, they were either both distractors or both targets.    

After the words disappeared, the participant was free to respond. In these go/no-

go tasks, the participant was instructed to press the spacebar as soon as they detected a 

target, and to do nothing if they saw no targets. Up to 1 second was allowed for a 

response. After the response interval elapsed or was ended by a keypress, feedback was 

given: the fixation cross was replaced with a smiley face for 500 ms if the response was 

correct, or a neutral face for 750 ms if the response was incorrect. Then, the fixation cross 

reappeared and another trial began (except when it came time for a break between blocks, 

see below). 

  Bottom word 

  None Distractor Target 

To
p 

w
or

d  

None N/A 0.125 0.125 

Distractor 0.125 0.25 0 

Target 0.125 0 0.25 

Table 2: The probability of stimulus pairings at the top and bottom locations in 
Experiments 1 and 2. The word at each location was either absent, a distractor, or a target. 
The green shading highlights conditions when 2 words were present. In this design, the 
two words were perfectly correlated, meaning that they were either both targets or both 
distractors.  
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Procedure: Once they accessed the experiment in Pavlovia, participants read a 

consent form and indicated their acceptance by pressing a key to continue. The program 

advanced through four pages of instructions with example stimuli. Then the participant 

conducted practice trials, which continued for at least 50 trials until the participant had 

responded correctly to 36 of the most recent 40 trials. Having completed that, they began 

the main experimental trials which came in 10 blocks of 60 trials each. Before starting the 

first block, participants were reminded to keep their head 1 arm’s length from the screen, 

maintain central fixation, and to respond as quickly as possible without making 

unnecessary errors. Between each block they were given written feedback about their 

percent accuracy (P) and the opportunity to rest. If P for the most recent block was at least 

96%, the feedback said, “Very nice! You got {P}% correct. In the next block, try to go a bit 

faster, while still getting at least 90% correct.” If P <= 72% correct, the feedback said, 

“Good job. You got P% correct. In the next block, try to get above 90% correct.” Otherwise, 

the feedback simply said, “You're doing great!” Participants completed the whole 

experiment in roughly 30 minutes, on average.  

Color detection task: Each word was either drawn in all dark gray letters (RGB 79, 

79, 79 out of 255) or its letters alternated between dark red (RGB 115, 18, 18) and dark 

green (RGB 17,102,15). Targets were defined as words written in colored letters; 

distractors were words written in gray letters. The words were drawn from the same set 

as in the semantic categorization task (see below).  

Lexical decision task: All the letters were dark gray (RGB 79, 79, 79). There were a 

total of 246 items in the stimulus set, half real English words and half pronounceable 

pseudowords. Within both categories, 33 had 4 letters, 46 had 5 letters, and 44 had 6 

letters. The real words were all nouns that were also used in the color & semantic tasks, 

with mean lexical frequency 16.4 occurrences per million (ranging 0.3-391). The 

pseudowords were generated using MCWord (Medler & Binder, 2005) to have trigram 

statistics (the probability of any sequence of three letters) matched to real words. Across 
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the 600 trials in the experiment, each word was repeated on average 3.7 times. We took 

care to match the mean lexical frequency and word lengths across trials with 1 real word 

and trials with 2 real words.  

Semantic categorization task: All the letters were dark gray as in the lexical task. 

There were a total of 246 English nouns in the stimulus set, half of which referred to living 

things and half to non-living things. Within the living category there were 39 4-letter 

words, 42 five-letter words, and 42-six-letter words. They referred to animals (e.g., “bird,” 

“turtle”, “woman”) and plants (e.g., “fern”, “orchid”; and one was “fungus”).  The non-

living category had 37 4-letter words, 42 five-letter words, and 44-six-letter words. They 

referred to common household items (e.g. “towel”), pieces of clothing (“e.g. “shoe”), and 

types of buildings (e.g., “cabin”), as well as natural non-living things (e.g., “snow”).  The 

distributions of lexical frequencies in the living and non-living categories were highly 

overlapping, with means 19.7 and 14.5, respectively. Each word was repeated on average 

3.7 times within the experiment.  

Analysis: We computed two measures of performance in each condition: the mean 

response time on correct trials, and the percent of trials with incorrect responses (errors). 

In most cases we focus on trials with targets, because only those measures test our models 

that assume self-terminating search for targets. For both measures, we compared the 

means on trials with two targets to trials with one target with paired t-tests. All t-test p-

values were corrected for false discovery rate across the 9 tests done for each measure in 

the entire study (Benjamini & Hochberg, 1995). We also used bootstrapping to get a 95% 

confidence intervals (CI) of each mean difference. Lastly, we supplement our pairwise 

tests with Bayes factors (BFs), which quantify the strength of evidence (Rouder et al., 

2009). The BF is the ratio of the probability of the data under the alternate hypothesis (that 

two means differ) relative to the probability of the data under the null hypothesis (that 

there is no difference). A BF of 10 would indicate that the data are 10 times more likely 

under the alternate hypothesis than the null. BFs between 3 and 10 are regarded as 
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substantial evidence for the alternate hypothesis, and BFs greater than 10 as strong 

evidence. Conversely, BFs between 1/3 and 1/10 are considered substantial evidence for 

the null hypothesis, etc. We computed BFs using the bayesFactor toolbox by Bart 

Krekelberg (https://doi.org/ 10.5281/zenodo.4394422). 

To compare across tasks across experiments, we also fit linear mixed effect (LME) 

models to single-trial data, with fixed effects of the task, the set size (number of words), 

random intercepts and slopes by participant, and random effects for individual stimulus 

items. All p-values for a certain test were corrected for false discovery rate across the 9 

tests done in the study.  

 
Figure 4: Redundant target effects in Experiment 1. These bar plots show the mean improvement 
in (A) mean correct response time (RT) and in (B) accuracy for 2 targets compared to 1 target. The 
mean performance levels from which these difference scores were derived are in Figure 5. Error 
bars are ± 1 SEM. Asterisks indicate that the mean effect is significantly different from 0 
(***p<0.001, **p<0.01, FDR-corrected).  
 

Results 

Response times: Figure 4A shows that in the color task, there was a positive 

redundant target effect: a speeding of correct responses to two targets compared to one, 

by 32 ms on average. However, in the semantic task, there was a significantly negative 
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effect (a slowing of responses) of 11 ms on average. In the lexical decision task, there was 

no effect of redundant targets. Table 3 lists the statistics on each effect. The mean 

response times in each individual condition (rather than the differences between one and 

two targets) are shown in the top row of Figure 5.  

To compare the redundant target effects across tasks, we also fit three linear 

mixed-effect models to single-trial correct response times (target-present trials only). 

Compared to the color task, both the lexical and semantic tasks had significantly different 

redundant target effects (both F>36, p<10-8). The lexical and semantic tasks yielded effects 

that were marginally different (F(1, 15475)=3.86, p=0.056).  

 
Figure 5: Mean performance in each task of Experiment 1, plotted separately for targets and 
distractors, for set size 1 vs. 2. (A) Mean correct response times. Note that there is no correct 
response time data for distractors, because in these go/no-go  tasks, the correct response to 
distractors was to not press any key. (B) Percent of trials with errors. Data for distractors are 
plotted with open symbols and dashed lines (showing how often the participants made false 
alarms). Error bars are ± 1 SEM.  
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Accuracy: Figure 4B shows the mean improvements in accuracy caused by a 

redundant target. There was a significant improvement in all three tasks (see statistics in 

Table 3). The mean percentage of trials with errors in each condition (including for trials 

with distractors) are plotted in the bottom row of Figure 5.  Compared to the color task, 

both the lexical and semantic tasks had smaller redundant target effects on accuracy for 

detecting targets (both F>39, p<10-9). The effects did not differ significantly between the 

lexical and semantic tasks (F(1, 18573)=0.75, p=0.50).  

 
Task Effect mean  Effect SEM 95% CI t p BF 

 Correct response time (ms) 
Color 31.98 2.49 [27 36] 12.67 6.35x10-12 1.09x1010 
Lexical -0.11 3.53 [-6 8] 0.03 0.98 0.20 
Semantic -10.67 3.53 [-17 -6] 3.60 0.002 27.69 

 Errors (percent) 
Color 7.95 2.10 [4.54 13.23] 3.72 0.001 35.778 
Lexical 2.12 0.80 [0.62 4.02] 2.59 0.017 3.22 
Semantic 1.90 0.86 [0.49 4.12] 2.19 0.038 1.54 

Table 3: Statistics on redundant target effects in Experiment 1, describing the mean 
improvement in response time or error rate, contrasting 1-target displays vs. 2-target 
displays. The degrees of freedom for the t-tests was 27. For each measure (response time 
or accuracy), p-values are corrected for false discovery rate across all 9 comparisons 
including all 3 experiments in the study. BF = Bayes Factor. 
 

Discussion 

The redundant target effects in the first experiment suggest that the colors of the 

letters within two words can be processed in parallel, leading to speeding of response 

times. However, the meanings of the two words are not necessarily processed in parallel. 

This is because the presence of a second word target in the lexical decision task yielded 0 

improvement in response time, and the semantic categorization task yielded a significant 

slowing of response time.  
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Our new theory shows that such a negative response time effect is in fact consistent 

with the standard serial model, even when accompanied by an increase in accuracy (see 

Appendix). It can be explained by participants occasionally mis-categorizing the first 

target they process as a distractor, then going on to correctly process the other target, with 

a slower response time compared to correct trials with single targets. It is potentially 

interesting that this negative redundant target effect was significant in the semantic task 

but not the lexical task, but we lack strong statistical evidence that those two results were 

significantly different from each other.   

  It is also noteworthy that redundant targets improved accuracy in all three tasks 

(although that effect was significantly larger in the color task than in the other two). Is 

that evidence of parallel processing of two words in all three tasks? Not necessarily: the 

serial model also predicts improvements in accuracy that go along with slowing of 

response speeds. This is merely a statistical facilitation: there are two chances to reach the 

correct decision when two targets are present. Also note that, as shown in the bottom row 

of Figure 5, errors on trials with distractors increase when the set size is 2 compared to 1 

(a decrease of accuracy, opposite to the pattern for trials with targets). This might also be 

consistent with a shift in decision criterion, as participants are somewhat more likely to 

report “target present” when they see two words than when they see one word.  

Thus, the entire data set is necessarily consistent with parallel processing in only 

the color task, which yielded a positive redundant target effect in both response time and 

accuracy.  

Experiment 2: Choice procedure with correlated stimuli 

Experiment 1 assessed redundant target effects with the simplest possible design 

(“correlated stimuli”, meaning no trials with mixed targets and distractors) and the 

procedure thought to be most sensitive (go/no-go). In the next two experiments, we used 

variations of the paradigm that have previously been used to study word recognition and 
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might alter the participant’s strategy. In Experiment 2, we used the same “correlated” 

stimulus conditions as Experiment 1, but we required participants to make a choice 

response (target present vs absent) on every trial.  

Methods 

Participants: Participants were recruited in the same way as in Experiment 1. See 

Table 1 for counts. Applying the same accuracy criteria as in Experiment 1, no 

participants had to be excluded.  

 Stimuli and procedure: All methodological details were the same as in Experiment 

1, except the participant had to make a categorization judgment on every trial: press the 

left arrow if no target was present on the screen, or the right arrow if any targets were 

present on the screen. The response interval was unlimited, but participants were 

requested to “respond as quickly as you can without making unnecessary errors.”   

 Analysis: To eliminate outliers, trials were excluded with response times more 

than 4 standard deviations above each participant’s grand mean. The mean percentages 

of trials thus excluded in the color, lexical and semantic tasks were 0.61%, 0.72%, and 

0.84%, respectively.  

 

Figure 6: Mean redundant target effects in Experiment 2. Format as in Figure 4. 
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Results 

Response times: Figure 6A demonstrates that the redundant target effects on 

correct response times in Experiment 2 were similar to those in Experiment 1. There was 

a significant speeding of response times in the color task (by 28 ms on average), no 

significant effect in the lexical task (-5 ms), and a significant slowing in the semantic task 

(by -18 ms). Statistics on the effect for each task are reported in Table 4. Compared to the 

color task, both the lexical and semantic tasks had significantly different redundant target 

effects (both F>18, p<10-4). The lexical and semantic tasks yielded effects that were not 

significantly different (F(1, 15141)=2.61, p=0.11). See the top row of Figure 7 for mean 

correct response times in each condition separately.  

 
Figure 7. Mean performance in each task of Experiment 2. Format as in Figure 4.  
 
  Accuracy: Figure 6B plots the mean improvements in accuracy caused by 

redundant targets, which were significant in all three tasks (as also reported in Table 4). 
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The mean percent errors in each condition are plotted in the bottom row of Figure 7.  

Compared to the color task, both the lexical and semantic tasks had smaller redundant 

target effects on accuracy (both F>21, p<10-5). The redundant target effects did not differ 

significantly between the lexical and semantic tasks (F(1, 16689)=0.05, p=0.82).  

Task Effect mean Effect SEM 95% CI t p BF 

 Correct response times (ms) 
Color 28.29 3.26 [22 35] 8.52 1.3x10-08 4.1x106 
Lexical -4.51 5.51 [-15 6] 0.80 0.48 0.27 
Semantic -17.50 4.38 [-26 -10] -3.92 0.001 57.8 

 Errors (percent) 
Color 8.14 1.14 [6.04 10.85] 7.02 1.1x10-6 1.2x105 
Lexical 3.10 0.71 [1.71 4.70] 4.30 0.001 142.9 
Semantic 2.45 0.60 [1.26 3.55] 4.03 0.001 74.8 

Table 4: Statistics on redundant target effects in Experiment 2, formatted as in Table 3. 
The degrees of freedom was 28 for the color task and 27 for the others. 

 

Discussion 

 The results of Experiment 2, which used a choice procedure, were consistent with 

the results of Experiment 1, which used a go/no-go procedure. The redundant target 

effects on response times were consistent with parallel processing in the color task and 

serial processing in the lexical and semantic tasks. Again, the redundant target effect in 

the semantic task was significantly negative.  

   

Experiment 3: Forced-choice procedure with uncorrelated stimuli 

In both experiments reported so far, the words presented simultaneously on trials 

with set size 2 were always of the same category (both targets or both distractors, 

although never the same exact words). That is what we mean by a ‘correlated’ stimulus 

design. One potential drawback of this design is that the participant might adopt a 

strategy of always processing just one word, knowing that the other word leads to the 
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same correct decision. (Although they cannot simply pick a side of the screen and always 

ignore stimuli presented on the other side, because half the trials contain just a single 

word that could be on either side, unpredictably). In the third experiment, we addressed 

this issue by including trials in which a target is paired with a distractor. Thus, the stimuli 

are uncorrelated. This should motivate the participant to process both stimuli as well as 

they can. Uncorrelated stimuli like this are also common in the wider visual search 

literature.  

 

Methods  

Participants: Participants in the lexical and semantic tasks were recruited and 

compensated in the same way as in Experiment 1, via Prolific. Participants in the color 

task were recruited from the Barnard College Introductory Psychology subject pool, and 

participated in exchange for course credit. See Table 1 for counts.  One participant was 

excluded for overall accuracy less than 0.6, and another because they pressed the same 

key on every trial (but overall proportion correct was greater than 0.6 because targets 

were present on 75% of trials).  

Stimuli and procedure: All details were the same as in Experiment 2, except as 

noted here. The primary difference is that 30% of trials contained mixed pairs of 1 target 

and 1 distractor. Table 5 lists the proportions of trials assigned to each type, which were 

chosen to ensure that the categories (target vs distractor) of the upper and lower stimuli 

were independent (uncorrelated). Specifically, on two-word trials, the conditional 

probability of one stimulus being a target given that the other was a target was 0.5. In 

contrast, this conditional probability was 1.0 in Experiment 1 and 2. Another difference 

in Experiment 3 was that across the experiment, the probability of a target being present 

on any given trial was 0.75, rather than 0.5. That was true both among trials with set size 

1 and trials with set size 2. To maintain a the same number of two-target trials as in 

Experiments 1 and 2, we increased the total number of trials in Experiment 3 to 1000. Each 



 30 

participated conducted 10 blocks of 100 trials each.Also, six words were added to the 

stimulus set for the color and semantic tasks (see the online data repository).   

  Bottom word 

  None Distractor Target 
To

p 
w

or
d 

None N/A 0.05 0.15 

Distractor 0.05 0.15 0.15 

Target 0.15 0.15 0.15 

Table 5: The probability of stimulus pairings at the top and bottom locations in 
Experiment 3. The word at each location was either absent, a distractor, or a target. The 
green shading highlights conditions when 2 words were present. In this design, the two 
stimuli were uncorrelated and independent: the conditional probability of one stimulus 
being a target given that the other was a target was 0.5. 

 

Analysis: We analyzed these data in the same way as Experiment 1 and 2, focusing 

on the comparison between trials with two targets and trials with a single target 

presented alone, which provide the best test of our self-terminating models of parallel or 

serial processing. The mean percentages of trials excluded for sluggish response times 

(>4 SDs above each participant’s mean) in the color, lexical and semantic tasks were 

0.48%, 0.56%, and 0.61%, respectively. 
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Figure 8: Redundant target effects in Experiment 3. Format as in Figures 4 and 6. These bar plots 
show the mean improvement in correct response time (RT) and accuracy comparing trials with 2 
targets to trials with just 1 target and 0 distractors. The mixed-pair trials were not included in this 
analysis (but are plotted in Figure 9).  
 

Results 

Response times: Figure 8A shows that the redundant target effects were consistent 

with the prior two experiments, although somewhat magnified. As detailed in Table 6, 

redundant targets improved responses in the color task (by 33 ms on average), but slowed 

responses in both the lexical task (-42 ms) and the semantic task (-74 ms). All three 

pairwise comparisons between these effects were significant (color vs. lexical and color 

vs. semantic: both F>27, p<10-6; lexical vs semantic: F(24587)=5.70, p=0.022).  See the top 

row of Figure 9 for mean correct response times in each condition separately, including 

the mixed target-distractor trials, which are represented with single lightly-shaded 

symbols.  
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Figure 9. Mean performance in each task of Experiment 3. Format as in Figures 5 and 7, 
except with the addition of ‘mixed’ trials that contained 1 target and 1 distractor.   
 

Accuracy: Figure 8B plots the positive effects of redundant targets on accuracy, 

which were significant in all three tasks (see Table 6). None of the pairwise comparisons 

of these effects across tasks were significant after correcting for multiple comparisons 

(color vs. lexical: F(25111)=3.45, p=0.095; color vs. semantic: F(25105)=4.10, p=0.077; lexical 

vs semantic: F(25114)=0.10, p=0.821). The mean percentage errors in each condition are 

shown in the bottom row of Figure 9.  
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Task 
Effect 
mean  

Effect 
SEM 95% CI t p BF 

 Correct response time (ms) 
Color 33.07 9.73 [21 72] 3.34 0.0032 15.2 
Lexical -41.53 9.67 [-71 -28] 4.22 0.0006 116.5 
Semantic -73.90 8.74 [-93 -58] 8.30 2x10-8 1.9x106 

 Errors (percent) 
Color 2.06 0.38 [1.34 2.76] 5.35 5.3x10-5 1.8x103 
Lexical 1.11 0.27 [0.62 1.58] 4.08 0.001 83.5 
Semantic 0.77 0.26 [0.26 1.34] 2.87 0.010 5.6 

Table 6: Statistics on redundant target effects in Experiment 3, formatted as in Table 3. 
The degrees of freedom for the t-tests was 27. 
 

Discussion  

 The results of Experiment 3 were consistent with both prior experiments: there is 

a positive redundancy target effect on response times only in the color task. One new 

result in this experiment was that the lexical task, as well as the semantic task, yielded a 

significantly negative redundant target effect (slowing of responses). These results again 

are consistent with the hypothesis that colors are processed in parallel, but word 

meanings are processed serially.  

 We chose to focus our analysis on trials with targets only. Some prior redundant 

target studies have compared two-target trials to the mixed target-distractor trials, in 

some cases to test theories of ‘coactivation’ (C. W. Eriksen et al., 1989; Miller, 1982; 

Mordkoff & Yantis, 1991). Other experiments with words have compared trials with two 

targets to trials with one target and a “filler” pseudoword stimuli that was neither a target 

nor distractor (Shepherdson & Miller, 2014). However, such contrasts do not clearly 

distinguish our self-terminating serial model from the parallel models. Even the serial 

model predicts faster responses to two targets than to a single target paired with a non-

target, because if the non-target is processed first, search must continue. As shown in 

Figure 9, mean responses to mixed-pair trials were in fact slower (and less accurate) than 
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responses to trials with two targets. Thus, we have focused on comparing two-target 

trials (set size 2) to single-target trials (set size 1). The result of that contrast was 

dramatically different across tasks.  

  

General Discussion  

The three experiments reported above consistently demonstrate that there is a 

positive redundant target effect when the targets are defined by color but not when the 

targets are defined by lexicality or by semantic category. In all three tasks, the stimuli 

were written words presented singly or in pairs above and/or below fixation.  In the color 

task, the presence of a redundant target (a word written in colored letters) consistently 

sped responses compared to trials with a single target. In the semantic task, the presence 

of a redundant target (a word that refers to a living thing) slowed responses in each 

experiment. In the lexical decision task, the redundant target had no effect in two 

experiments (with correlated stimuli), and a significantly negative effect in the third 

experiment (with uncorrelated stimuli).  

 These data are all consistent with the hypothesis that the low-level features, such 

as color, of multiple stimuli are processed in parallel, but written words are recognized 

serially. The lexical decision and semantic categorization tasks were two ways to assess 

word recognition: the lexical decision task requires the participant to judge the familiarity 

of each letter string, and the semantic categorization task further requires further 

judgment of the word’s meaning.  

Relation to previous redundant target studies of word recognition  

 In contrast to our key result, some prior studies of word recognition have reported 

positive redundant target effects. However, several of those experiments presented two 

copies of the same word on redundant target trials (Egeth et al., 1989; Hasbrooke & 
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Chiarello, 1998; Mohr et al., 1994, 1996; Mullin & Egeth, 1989, Experiment 1-2). The 

resulting redundant target effects might be explained by facilitation or co-activation at 

the stage of letter or syllable processing, for example, rather than actual semantic 

recognition. The only study to report a positive redundant target effect that did not 

present identical pairs of words was by Shepherdson & Miller (2014). They found that 

semantic categorization judgments were faster for two targets than for a single target 

paired with a pronounceable non-word. This could be interpreted as a positive redundant 

target effect and evidence for parallel processing. However, the result can be explained 

by the serial model if we assume that on some one-word trials, the participant processes 

the non-word before they process the target. Therefore, we consider the strict test of our 

serial model to be the contrast between trials with two targets (which are two different 

words) and trials with a single target presented alone.  

Thus far, all experiments that made this strict test of the serial model with word 

recognition tasks lead to the same conclusion. They were conducted by us in the present 

study and by Mullin & Egeth (1989). The experiments in that prior study were like our 

Experiment 1: they presented words above and/or below fixation and used go/no-go 

target detection tasks in which targets were never presented with distractors (a correlated 

stimulus design). In two of their experiments, the words presented together on 

redundant-target trials were not identical (as in ours). In those experiments, they found 

that both lexical decision and semantic categorization judgments were slowed by the 

presence of a redundant target – but significantly so only in the lexical task. Based on 

these results, the authors rejected the standard, self-terminating, unlimited-capacity 

parallel processing model for recognizing two words, as do we. They raised several 

tentative explanations for how ‘interference’ between two words might cause the 

negative redundant target effect. But as we discussed, this negative effect is predicted by 

the standard serial model that accounts for errors in stimulus classification.  
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 We also go beyond previous studies by showing that the conclusions hold for 

choice tasks (Experiment 2) and well as go-no/go tasks (Experiment 1), and when the two 

stimuli are ‘uncorrelated’, meaning that targets can appear with distractors (Experiment 

3). Importantly, we also contrasted the word recognition tasks to a color task. The color 

task served as a positive control that demonstrated that redundant target effects are 

possible with the same stimuli presented at the same locations.  

Thus, we can reject the standard serial model for the color task, but not for the 

word recognition tasks (i.e., lexical decision and semantic categorization). In addition, we 

can reject the standard unlimited-capacity, parallel model for the word recognition tasks, 

but not for the color tasks. What we cannot do is reject the standard fixed-capacity, parallel 

model for the word recognition tasks. That does not mean that the fixed-capacity model 

is always viable. It can predict the wide range of redundant target effects, depending on 

the assumptions built into it and the specific parameters. More work is needed to test 

those assumptions and parameters.    

Relation to the wider literature on serial versus parallel word recognition   

 Two related questions have fueled many studies of visual word recognition and 

reading: (1) Can multiple words be recognized in parallel? (2) In natural reading, do 

readers process multiple words in parallel? Both questions are heavily debated. The 

redundant target effects explored in the present article are one way to investigate the first 

question. The second question arose earlier, however, so we review it next and then 

return to the first question.  

There is ample evidence that when fixating word n, readers begin processing word 

n+1 before the eyes move (e.g., “parafoveal preview”; Schotter et al., 2012). That might 

either mean that attention is distributed over multiple words simultaneously, or that 

before the eyes move from word n, processing shifts covertly to word n+1, and words are 
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processed serially. Several computational models predict such phenomena assuming 

either parallel or serial processing of individual words (Engbert et al., 2005; Reichle et al., 

2006; Reilly & Radach, 2006; Snell, van Leipsig, et al., 2018). The debate between such 

models has proven intractable over the years.  

One interesting empirical result during a naturalistic reading task is the transposed 

word effect: readers often fail to notice when the order of two words has been reversed 

(Mirault et al., 2018). That might be evidence that readers process multiple words in 

parallel with imperfect position coding (Snell & Grainger, 2019b). However, the 

transposed word effect also occurs when the words in each sentence are presented one at 

a time, serially, and parallel processing is not possible (Hossain & White, 2023; Huang & 

Staub, 2022; Liu et al., 2022; Milledge et al., 2023; but see Mirault et al., 2022).  

 Given the complexity of natural reading and the wide range of models to explain 

it, other researchers (including the present authors) have turned to more controlled 

experimental paradigms. The goal is to investigate the fundamental processing capacity 

limits of visual word recognition – are readers even capable of recognizing two words in 

parallel, when they are forced to try?  

One such paradigm is the unspeeded dual-task paradigm that measures accuracy. 

It has provided evidence for a serial “bottleneck” in word recognition (White, Boynton, 

et al., 2019). In these experiments, participants are presented with two words at once. 

They must either response to one pre-cued word (with focused attention) or respond to 

both words in sequence (with divided attention). A key difference from the redundant 

target paradigm is that the two words must be judged independently, rather than 

integrated to one decision. Also, the primary measure is accuracy rather than response 

time, and several studies have post-masked the words after an interval calibrated to each 

individual’s performance in the single-task condition. Thus, each participant is given just 
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enough time to process one word, and the question is whether they can process two 

words with divided attention in that same amount of time. Parallel and serial processing 

models make predictions for the magnitude of the drop in accuracy in the divided 

attention condition compared to the focused attention condition.  

The results of several dual-task studies have been consistent with the serial model: 

the observer can recognize only one word per trial and must guess when asked about the 

other. That has been true for semantic categorization and lexical decision judgments, with 

words positioned above/below fixation, and to the left/right (White et al., 2018, 2020; 

White, Palmer, et al., 2019). The cost of dividing attention on accuracy in these 

experiments rejects the standard unlimited or fixed-capacity parallel models. That 

measure alone cannot reject a more extreme limited-capacity model. However, another 

result in these studies is a negative correlation between the two responses made within 

the same trial. The response to one stimulus was more likely to be correct when the 

response to the other stimulus was incorrect. This result is consistent with the standard 

serial model and rejects all standard parallel models. To account for the negative 

correlation, the parallel model would need an ad-hoc addition.  

By varying the types of judgements that participants must make about pairs of 

words, dual-task experiments have shed some light on the source of the processing 

bottleneck. When the task was to judge the colors of the letters, rather than the meaning 

of the words, accuracy was consistent with an unlimited-capacity or modestly limited-

capacity, parallel model (White et al., 2018, 2020). When the task was to detect vowels 

within letter strings, or the judge the pronounceability of letter strings, accuracy was 

again consistent with the standard serial model (Campbell et al., 2024). These data lead 

to a similar conclusion as the redundant target studies reported in the present article: 

low-level features are processed in parallel, but linguistic features of words are processed 
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serially. In addition, one neuroimaging study identified a potential neural locus of the 

serial bottleneck in the left ventral temporal cortex (White, Palmer, et al., 2019).  

A related paradigm is called “partially-valid cueing,” in which one of two stimulus 

locations is pre-cued as more likely to be task-relevant. One study using post-masked 

words found that when participants were asked to judge the semantic category of a word 

that appeared at the uncued (less attended) location, they performed no better than 

chance (Johnson et al., 2022). This is again consistent with the standard serial model for 

word recognition. On the face of it, this result is inconsistent with any parallel model. If 

processing in parallel, why not acquire some information about the low-probability 

word? To save the parallel model, one must assume a strategy of processing only one 

word at a time under some conditions; in other words, the parallel model becomes 

effectively serial.  

 Not all studies agree, however (Snell & Grainger, 2019a). Varieties of the “flanker 

paradigm” (Eriksen & Eriksen, 1974) have demonstrated that judgments of one target 

word are influenced by the characteristics of nearby, task-irrelevant words (Snell et al., 

2017; Snell, Mathôt, et al., 2018; Snell & Grainger, 2018, but see Broadbent & Gathercole, 

1990). That is true even when the whole display is flashed for 50 ms and then masked 

(Snell, 2024). Moreover, there is a “sentence superiority effect”: when the words that are 

flashed along with the target form a sentence, the target is reported more accurately than 

when the word order is scrambled (Snell & Grainger, 2017; Wen et al., 2019). One 

interpretation of these results is that the words in each display were all processed 

simultaneously (Snell & Grainger, 2019b). It is important to note that these experiments 

differ from the redundant target experiments reported above in at least two key ways: (1) 

the target word was fixated directly and flankers were arranged horizontally to the left 

and right; (2) only one word was task-relevant, so the influence of flankers is probably 

due to automatic processing.  
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 Thus, prior research on the capacity for processing of multiple words has yielded 

some inconsistent results. The dual-task studies, in which participants explicitly attempt 

to recognize two unrelated words at once, have so far been consistent with a serial model. 

The words in those studies have been positioned in the parafovea and thus may not 

capture the processing capacity of natural reading. The flanker effect studies have been 

interpreted as evidence for parallel processing of multiple words (arranged horizontally). 

These flanker-effect studies have not as strictly controlled the time available to process 

each display, nor tested specific quantitative models of serial processing.  

The data reported in the present article add to that prior research in several ways. 

The redundant target paradigm complements the dual-task paradigm because the words 

do not have to be post-masked, and the observer needs not make independent 

judgements about two words simultaneously. Moreover, the effects on response time can 

be compared to specific quantitative models. Altogether, our results so far are consistent 

with the dual-task studies in supporting the serial model. It is important to note, though, 

that we have tested only displays with words placed above and below the fixation point, 

rather than in more naturalistic arrangements.   

Relation to previous theory on response time and accuracy  

In this article, we have emphasized developing a general theory of redundant 

target effects that predicts both response time and accuracy. It is general in the sense that 

it does not assume any particular stochastic process or response time distribution. Most 

previous work has followed one of two paths. One is to develop a pure response time 

theory that ignores errors (e.g., Townsend & Nozawa, 1995). This work is also general in 

not assuming particular stochastic processes or response time distributions.  

The second path is to assume a specific stochastic process such as the diffusion 

process or the linear ballistic accumulator (both described in the Appendix). For example, 

Blurton, Greenlee & Gondan (2014) built on the diffusion process to model the redundant 
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target effect. The strength of this path is the integrated treatment of response time and 

accuracy.  

Here we sought to expand the general response time models to incorporate errors. 

The surprising result was that the standard, self-terminating, serial model with errors 

showed a negative redundant target effect. This is not predicted by the corresponding 

pure response time model. This work complements other recent effects to generalize pure 

response time models. In particular, Little et al. (2022) extended part of the theory of 

systems factorial technology to include errors. They examine the prediction of the double-

factorial paradigm to distinguish serial and parallel processes. They showed that the 

previous analysis of exhaustive search models was general to conditions with errors. 

However, they did not find a similar general result for self-terminating search models. 

Instead, they examined two special cases and showed that the analysis for pure response 

time did generalize to those cases. This is important progress, but it remains to be 

determined if this method of distinguishing serial and parallel models holds for all 

standard, self-terminating models with errors.  

In summary, a critical development is the creation of general theories of both 

response time and accuracy. We have developed such a theory for the redundant target 

paradigm.  

 

Conclusion  

 This study makes two primary contributions: first, we developed a new theory of 

the redundant target effect, which yielded some new results. By accounting for errors as 

well as response time, the standard, self-terminating serial model predicts that redundant 

targets slow correct responses, even when they increase accuracy. In contrast, the 

standard, self-terminating, unlimited-capacity parallel model always predicts positive 

redundant target effects, even when allowing for errors. We also developed specific 

examples of standard, fixed-capacity parallel models, which can predict a wide range of 
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redundant target effects. Second, we presented experimental tests of these predictions for 

judgements of words. When the task required judgment of the letter colors, a positive 

redundant target effect rejected the standard serial model. When the task required 

recognizing the words, zero or negative redundant target effects rejected the standard, 

unlimited-capacity parallel model and was instead consistent with the standard serial 

model. Thus, the redundant target paradigm shows promise for discriminating parallel 

and serial models.  
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APPENDIX  

This appendix describes three closely matched models of the redundant target effect: one 

serial and two parallel.  These models start from the standard self-terminating search models 

(e.g., Townsend & Nozawa, 1995) and add an account of accuracy.  The main new result is that 

when there are errors, the standard self-terminating serial model predicts a slower response with 

two targets compared to one.  This contrasts with the corresponding self-terminating serial model 

without errors that predicts no effect on response time. Another new result concerns the 

prediction of the standard self-terminating, unlimited-capacity, parallel model with errors. It 

predicts that the response time for two targets is faster than for one target.  This is in accord with 

the corresponding parallel model without errors, although the effect is reduced with errors.  

Finally, for the standard fixed-capacity, parallel model there are no general predictions.  Thus, 

among these landmark models, the redundant target paradigm can help distinguish serial and 

parallel processing. 

Task Description 

We focus on typical yes-no visual search tasks in which one or two stimuli are presented.  

A stimulus can either be a target 𝑡 or a distractor 𝑑.  When the task has one stimulus, the possible 

stimuli are 𝑡 and 𝑑.  When the task has two stimuli, the possible stimuli are 𝑡𝑡, 𝑑𝑑 and	𝑡𝑑.  Thus, 

the entire set of possible stimuli is 𝑆 = {𝑡, 𝑑, 𝑡𝑡, 𝑑𝑑, 𝑡𝑑}.  The task is to respond “yes” to the 

presence of any target, and respond “no” to the absence of any target.  The notation is 

summarized in a table at the end of the appendix. 

There are three primary response measures of the redundant target task to be predicted 

that are subscripted by the stimulus condition: probability of a correct response 𝑝), the mean 

correct response time 𝜇),#$%%&#!, and the mean incorrect response time 𝜇),'(#$%%&#! for 𝑠 ∈ 𝑆.  For 
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example, for the single target condition 𝑡, these variables are denoted: 𝑝!, 𝜇!,#$%%&#!, and 

𝜇!,'(#$%%&#!.   

Standard Self-terminating Serial Model with Errors 

As with typical models of pure response time without errors, our serial model is based 

upon the selective influence of each stimulus on a separate process.  In other words, there is one 

stimulus-specific component process for each stimulus.  Each component process mediates the 

effect of one stimulus on both response time and accuracy.   

For each possible stimulus 𝑠 ∈ {𝑡, 𝑑} and associated component process, define a binary 

random variable for accuracy by 𝒁), which has a value of 1 if the decision is correct for that 

individual stimulus, and a value of 0 if incorrect.  In addition, denote the random variables for 

the component processing time for a correct decision for stimulus 𝑠 by 𝑫),#$%%&#!, and for an 

incorrect decision by  𝑫),'(#$%%&#!.  We emphasize that these are decisions are about a single 

stimulus and not about the response made to the set of stimuli. 

As with similar models, assume that, besides the component processes, there are other 

“residual” processes that do not depend on the stimulus and do not affect accuracy, but 

contribute to the response time.  The processing time from these residual processes is denoted by 

a random variable 𝑹 and it additively combines with the stimulus-specific component processes 

to yield the response time.  We allow this residual processing time to depend on the specific 

response regardless of the stimulus.  The random variable 𝑹*&) represents the residual processing 

time when the response is “yes” indicating the presence of a target, and 𝑹($ when the response is 

“no” indicating the absence of a target. 

As with standard models of response times without errors, we assume a strong degree of 

independence, termed context independence, between component processes in terms of accuracy 
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and the component processing time.  The component accuracy to one stimulus is assumed to be 

independent of other stimuli in the same stimulus condition.  Consider a stimulus condition with 

two stimuli, denoted 𝑠+ and 𝑠,, with 𝑠+, 𝑠, ∈ {𝑡, 𝑑}. Under this assumption, the random variable 

for component accuracy to stimulus 𝑠+, 𝒁)!, is independent of the random variable for 

component accuracy to stimulus 𝑠,, 𝒁)".   Furthermore, when 𝑠+ = 𝑠, (either both targets or both 

distractors), the component accuracies are identically distributed, that is, 𝒁)!is identically 

distributed to 𝒁)". 

Similarly, the component processing times are unaffected by the context for a given 

stimulus. They are independent of each other, and when the stimulus is the same (either both 

targets or both distractors), are identically distributed.  Specifically, for a stimulus condition with 

two stimuli 𝑠+ and 𝑠,, with 𝑠+, 𝑠, ∈ {𝑡, 𝑑}, all pairs of the random variables 𝑫)!,#$%%&#!, 

𝑫)",#$%%&#!, 𝑫)!,'(#$%%&#!, 𝑫)",'(#$%%&#!, 𝒁)!, and 𝒁)" are independent, often referred to as 

stochastic independence.  Additionally, the random variables 𝑹*&) and 𝑹($ are independent of 

the other random variables.  Moreover, when 𝑠+ = 𝑠, , then 𝑫)!,#$%%&#! is identically distributed 

to 𝑫)",#$%%&#! and 𝑫)!,'(#$%%&#! is identically distributed to 𝑫)",'(#$%%&#!.   

Context independence, including the accuracy and component processing assumptions, 

subsumes the more specific independence assumptions of independence from set size (unlimited 

capacity) and independence from processing order (in the serial model).  For parallel models, we 

separate the unlimited-capacity assumption from context independence to allow consideration of 

limited capacity. 

Even with context independence, the accuracy and component times within a single 

component process are not constrained and can be dependent.  Specifically, for any 𝑠 ∈ {𝑡, 𝑑}, 

there is no restriction between 𝒁), 𝑫),#$%%&#!, and 𝑫),'(#$%%&#!.  This is because correct and 
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incorrect component processing times can differ, and are represented by separate variables.  This 

allows the mean incorrect response time to be slower or faster than the mean correct response 

time. 

Predictions of the Standard Self-terminating Serial Model with Errors 

First consider stimulus conditions with either a single target 𝑡 or two targets 𝑡𝑡.  Our goal 

is to describe the component processes of the two-stimulus conditions in terms of the component 

processes of a single stimulus. 

For a single target condition 𝑡, the predicted probability of a correct response is defined 

as  

 𝑝! = 𝑃(𝒁! = 1). (1) 

The random variable for the correct response time to a target is, 

 𝑻!,#$%%&#! = 𝑫!,#$%%&#! + 𝑹*&). 

The expected response time for a correct response to a single target is then the sum of the 

expected values of that 𝑫!,#$%%&#! and 𝑹*&), 

 𝜇!,#$%%&#! = E*𝑫!,#$%%&#!, + E*𝑹*&),.																																													(2)  

Relying on stochastic independence, 𝑫!,#$%%&#! and 𝑹*&) are independent and therefore the 

variance of the response time of a correct response is the sum of the variances, 

 𝜎!,#$%%&#!, = Var[𝑫!,#$%%&#!] + Var[𝑹*&)].  

Similarly, the random variable for the incorrect response time to a target is, 

𝑻!,'(#$%%&#! = 𝑫!,'(#$%%&#! + 𝑹($													 

with expected value and variance as, 

 𝜇!,'(#$%%&#! = E[𝑫!,'(#$%%&#!] + E[𝑹($]  

 𝜎!,'(#$%%&#!, = Var[𝑫!,'(#$%%&#!] + Var[𝑹($].  
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For the two-target condition 𝑡𝑡, consider three mutually exclusive cases that describe the 

possible processing sequences of this serial model: 

Case 1: One stimulus is processed first and is correct, and then processing is terminated 

(ignoring the other stimulus). 

Case 2: One stimulus is processed first and is incorrect, and then the other stimulus is 

processed correctly. 

Case 3: One stimulus is processed first and is incorrect, and then the other stimulus is 

processed and is also incorrect. 

The probabilities and response times follow by case. 

Case 1: The probability that Case 1 occurs is equal to the probability that a single 

stimulus is processed correctly, because of context independence, 

𝑝!!,-.)&+ = 𝑃(𝒁! = 1) = 𝑝! . 

The correct response time for Case 1 is the same as the response time for a correct response to a 

single target, also because of context independence, 

𝑻!!,-.)&+ = 𝑫!,#$%%&#! + 𝑹*&). 

The expected correct response time for Case 1 is, 

𝜇!!,-.)&+ = 𝐸[𝑫!,#$%%&#!] + 𝐸[𝑹*&)]. 

Due to stochastic independence, the variance of the correct response time for Case 1 is, 

 𝜎!!,-.)&+, = Var[𝑫!,#$%%&#!] + Var[𝑹*&)].  

Case 2: The probability that Case 2 occurs is equal to the probability that one stimulus is 

processed first and is incorrect, and that the other stimulus is processed correctly.  Let 𝑡/'%)! 

denote the target processed first, and 𝑡)&#$(0 denote the target processed second.  By context 
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independence and stochastic independence, the probability of Case 2 can be expressed in terms 

of single stimulus probabilities, 

𝑝!!,-.)&, = 𝑃 L𝒁!#$%&' = 0	and	𝒁!&()*+, = 1O = (1 − 𝑝!)𝑝! .	 

The correct response time for Case 2, also relying on context independence, is the processing 

time for an incorrect response to one stimulus plus the processing time for a correct response to 

the other stimulus, 

𝑻!!,-.)&, = 𝑫!,'(#$%%&#! +𝑫!,#$%%&#! + 𝑹*&). 

The expected correct response time for Case 2 is, 

𝜇!!,-.)&, = 𝐸[𝑫!,'(#$%%&#!] + 𝐸[𝑫!,#$%%&#!] + 𝐸[𝑹*&)]. 

The variance of the correct response time for Case 2, relying on stochastic independence, is, 

                                      𝜎!!,-.)&,, = Var*𝑫!,'(#$%%&#!, + Var*𝑫!,#$%%&#!, + Var*𝑹*&),.  

 

Case 3: The probability that Case 3 occurs in the serial model is equal to the probability 

that both stimuli are processed incorrectly.  By context independence and stochastic 

independence,  

𝑝!!,-.)&1 = 𝑃(𝒁! = 0	and	𝒁! = 0) = (1 − 𝑝!),. 

The incorrect response time for Case 3 in the serial model is the processing time for an 

incorrect response to one stimulus plus the processing time for an incorrect response to the other 

stimulus, 

𝑻!!,-.)&1 = 2	𝑫!,'(#$%%&#! + 𝑹($ . 

The expected incorrect response time for Case 3 is, 

𝜇!!,-.)&1 = 2𝐸[𝑫!,'(#$%%&#!] + 𝐸[𝑹($]. 

The variance of the incorrect response time for Case 3 is, 
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𝜎!!,-.)&1, = 2	Var*𝑫!,'(#$%%&#!, + Var[𝑹($]. 

In the two-target condition, a correct response is achieved in Case 1 and in Case 2, 

resulting in a mixture distribution (see Chatfield & Theobald, 1973).  The probability of a correct 

response is the probability of Case 1 plus the probability of Case 2, because they are mutually 

exclusive, 

𝑝!! = 𝑝!!,-.)&+ + 𝑝!!,-.)&, 

= 𝑝! + (1 − 𝑝!)𝑝! 

																																																													= 2	𝑝! − 𝑝!,.																																																																	(3) 

The expected response time for a correct response to a two-target condition, 𝜇!!,#$%%&#!, is the 

weighted average of the expected response times for Case 1 and Case 2.  The weight for Case 1 

is the proportion of correct responses for Case 1, i.e., the ratio of the probability of Case 1 to the 

probability of Case 1 or Case 2, 

𝑤-.)&+ =
𝑝!!,-.)&+

R𝑝!!,-.)&+ + 𝑝!!,-.)&,S
=

𝑝!
(2𝑝! − 𝑝!,)

=
1

(2 − 𝑝!)
. 

Similarly, 

𝑤-.)&, =
𝑝!!,-.)&,

R𝑝!!,-.)&+ + 𝑝!!,-.)&,S
=
𝑝!(1 − 𝑝!)	
(2𝑝! − 𝑝!,)

=
(1 − 𝑝!)
(2 − 𝑝!)

	. 

Using these weights, the expected correct response time is, 

𝜇!!,#$%%&#! = 𝑤-.)&+𝐸[𝑻!!,-.)&+] + 𝑤-.)&,𝐸[𝑻!!,-.)&,]																																																																									 

							= 𝑤-.)&+𝜇!!,-.)&+ +𝑤-.)&,	𝜇!!,-.)&,																																																																									 

													= .
1

2 − 𝑝!
0𝐸[𝑫!,#$%%&#! + 𝑹*&)] + .

1 − 𝑝!
2 − 𝑝!

0𝐸[𝑫!,'(#$%%&#! +𝑫!,#$%%&#! + 𝑹*&)] 

																					= 𝐸[𝑫!,#$%%&#!] +		 L
+23'
,23'

O𝐸[𝑫!,'(#$%%&#!] + 𝐸[𝑹*&)].																																																	(4) 
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The variance of the correct response time for a mixture is the sum of two parts: the first 

part is the weighted averages of the variances of each case, and the second part is the variance 

due to the differences in the means of the cases. This is called the law of total variance (Chatman 

and Theobald, 1973), and yields, 

𝜎!!,#$%%&#!, = (𝑤-.)&+𝜎!!,-.)&+, +𝑤-.)&,	𝜎!!,-.)&,, )

+ R𝑤-.)&+𝜇!!,-.)&+, +𝑤-.)&,	𝜇!!,-.)&,, − 𝜇!!,#$%%&#!, S. 

To obtain the expected incorrect response time, one can use the results for Case 3 because 

that is the only case that results in an incorrect response, 

𝜇!!,'(#$%%&#! = 𝐸[𝑻!!,-.)&1] = 2𝐸[𝑫!,'(#$%%&#!] + 𝐸[𝑹($]. 

The variance of the incorrect response time is the same as that for Case 3, 

𝜎!!,'(#$%%&#!, = 2	Var*𝑫!,'(#$%%&#!, + Var[𝑹($]. 

Our main focus is on the difference between the correct response time for one target and 

the correct response time for two targets.  The difference is constructed so that a faster response 

time to two targets results in a positive difference.  Using Equations (2) and (4), the difference is,  

𝜇!,#$%%&#! − 𝜇!!,#$%%&#! = R𝐸*𝑫!,#$%%&#!, + 𝐸*𝑹*&),S																																																											 

																																																		−	.𝐸[𝑫!,#$%%&#!] +		.
1 − 𝑝!
2 − 𝑝!

0𝐸[𝑫!,'(#$%%&#!] + 𝐸[𝑹*&)]0 

																																													= −.
1 − 𝑝!
2 − 𝑝!

0 𝐸[𝑫!,'(#$%%&#!].																																																							(5) 

This difference is less than or equal to zero.  When there are no errors (𝑝! = 1), the correct 

response times are equal and difference equals zero.  Thus, the serial model predicts, in the 

presence of errors, that a correct response time for two targets is slower than the correct response 

time for one target. 
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Next consider the difference between the probability of a correct response for two targets 

and the probability of a correct response for one target.  The difference is constructed so that an 

increase in accuracy for two targets results in a positive difference.  Using Equations (1) and (3), 

the difference is,  

																																	𝑝!! − 𝑝! =	(2	𝑝! − 𝑝!,) − 𝑝! = 𝑝! − 𝑝!,																																										(6) 

which is greater than or equal to zero.  Thus, redundant targets improve accuracy. 

 For completeness, the other predictions of this serial model are given next. 

For a single distractor condition 𝑑, by definition,  

𝑝0 = 𝑃(𝒁0 = 1), 

𝑻0,#$%%&#! = 𝑫0,#$%%&#! + 𝑹($ ,	and 

𝑻0,'(#$%%&#! = 𝑫0,'(#$%%&#! + 𝑹*&). 

The expected values and variances are, 

 𝜇0,#$%%&#! = E*𝑫0,#$%%&#!, + E[𝑹($],  

𝜎0,#$%%&#!, = Var*𝑫0,#$%%&#!, + Var[𝑹($], 

 𝜇0,'(#$%%&#! = E*𝑫0,'(#$%%&#!, + E*𝑹*&),,	and  

𝜎0,'(#$%%&#!, = Var[𝑫0,'(#$%%&#!] + Var[𝑹*&)]. 

For the two-distractor condition 𝑑𝑑, there are three cases. The first case is when both 

distractors are processed correctly,  

𝑝00,-.)&+ = 𝑃(𝒁0 = 1	𝑎𝑛𝑑	𝒁0 = 1) = 𝑝0,,	and 

𝑻00,-.)&+ = 2𝑫0,#$%%&#! + 𝑹($ , 

with 

 𝜇00,-.)&+ = 2	E*𝑫0,#$%%&#!, + E[𝑹($],  

𝜎00,-.)&+, = 2	Var*𝑫0,#$%%&#!, + Var[𝑹($]. 
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The second case is when one distractor is processed incorrectly, which terminates processing,	

𝑝00,-.)&, = 𝑃(𝒁0 = 0) = 1 − 𝑝0 ,	and 

𝑻00,-.)&, = 𝑫0,'(#$%%&#! + 𝑹*&), 

with 

 𝜇00,-.)&, = E*𝑫0,'(#$%%&#!, + E*𝑹*&),,  

𝜎00,-.)&,, = Var*𝑫0,'(#$%%&#!, + Var*𝑹*&),. 

 

The third case is when one distractor is processed correctly but the second distractor is processed 

incorrectly,	

𝑝00,-.)&1 = 𝑃(𝒁0 = 1	𝑎𝑛𝑑	𝒁0 = 0) = 𝑝0(1 − 𝑝0),	and 

𝑻00,-.)&1 = 𝑫0,#$%%&#! +𝑫0,'(#$%%&#! + 𝑹*&), 

with 

𝜇00,-.)&1 = E*𝑫0,#$%%&#!, + E*𝑫0,'(#$%%&#!, + E*𝑹*&),, 

𝜎00,-.)&1, = Var*𝑫0,#$%%&#!, + Var*𝑫0,'(#$%%&#!, + Var*𝑹*&),. 

Only the first case yields a correct response, thus 

𝑝00 = 𝑝00,-.)&+ = 𝑝0,, and	 

𝑻00,#$%%&#! = 2𝑫0,#$%%&#! + 𝑹($ . 

The expected value and variance for a correct response is 

 𝜇00,#$%%&#! = 2	E*𝑫0,#$%%&#!, + E[𝑹($],  

𝜎00,#$%%&#!, = 2	Var*𝑫0,#$%%&#!, + Var[𝑹($]. 

The other two cases yield incorrect responses, yielding a mixture distribution. The weight for 

Case 2 is the fraction of incorrect responses due to Case 2 relative to all incorrect responses, 



 61 

𝑤-.)&, =
(1 − 𝑝0)

R(1 − 𝑝0) + 𝑝0(1 − 𝑝0)S
=

1
1 + 𝑝0

	.	 

Similarly, the fraction of incorrect responses due to Case 3 relative to all incorrect responses is, 

𝑤-.)&1 =
𝑝0(1 − 𝑝0)

R(1 − 𝑝0) + 𝑝0(1 − 𝑝0)S
=

𝑝0
1 + 𝑝0

	. 

The weighted combination of Cases 2 and 3 yields the expected incorrect response time, 

𝜇00,'(#$%%&#! = 𝑤5678,𝐸[𝑻00,-.)&,] + 𝑤56781𝐸[𝑻00,-.)&1]																																																																							 

		= .
1

1 + 𝑝0
0 R𝐸[𝑫0,'(#$%%&#!] + 𝐸[𝑹*&)]S

+ .
𝑝0

1 + 𝑝0
0 R𝐸[𝑫0,#$%%&#!] + 𝐸[𝑫0,'(#$%%&#!] + 𝐸[𝑹*&)]S 

																			= E[𝑫0,'(#$%%&#!] + .
𝑝0

1 + 𝑝0
0 𝐸[𝑫0,#$%%&#!] + 𝐸[𝑹*&)].																																													 

The variance of the incorrect response time for the mixture of Cases 2 and 3 is, 

𝜎00,'(#$%%&#!, = (𝑤-.)&,𝜎00,-.)&,, +𝑤-.)&1	𝜎00,-.)&1, )

+ R𝑤-.)&,𝜇00,-.)&,, +𝑤-.)&1	𝜇00,-.)&1, − 𝜇00,'(#$%%&#!, S. 

For the one target and one distractor condition 𝑡𝑑, there are six mutually exclusive 

cases. The cases are distinguished by whether the target is processed first (Cases 1, 2, and 3), or 

the distractor is processed first (Cases 4, 5, and 6). Which stimuli is processed first is considered 

to be random (probability of 0.5).  The first case is that the target is processed first and is correct,  

𝑝!0,-.)&+ = 𝑝! , 

𝑻!0,-.)&+ = 𝑫!,#$%%&#! + 𝑹*&), 

with  

𝜇!0,-.)&+ = E*𝑫!,#$%%&#!, + E*𝑹*&),, 

𝜎!0,-.)&+, = Var*𝑫!,#$%%&#!, + Var*𝑹*&),. 
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The second case is that the target is processed first incorrectly and then the distractor is 

processed correctly,  

𝑝!0,-.)&, = (1 − 𝑝!)𝑝0 

𝑻!0,-.)&, = 𝑫!,'(#$%%&#! +𝑫0,#$%%&#! + 𝑹($ , 

with 

𝜇!0,-.)&, = E*𝑫!,'(#$%%&#!, + E*𝑫0,#$%%&#!, + E[𝑹($], 

𝜎!0,-.)&,, = Var*𝑫!,'(#$%%&#!, + Var*𝑫0,#$%%&#!, + Var[𝑹($]. 

The third case is that the target is processed first incorrectly and then the distractor is processed 

incorrectly,  

𝑝!0,-.)&1 = (1 − 𝑝!)(1 − 𝑝0), 

𝑻!0,-.)&1 = 𝑫!,'(#$%%&#! +𝑫0,'(#$%%&#! + 𝑹*&), 

with 

𝜇!0,-.)&1 = E*𝑫!,'(#$%%&#!, + E*𝑫0,'(#$%%&#!, + E*𝑹*&),, 

𝜎!0,-.)&1, = Var*𝑫!,'(#$%%&#!, + Var*𝑫0,'(#$%%&#!, + Var*𝑹*&),. 

The fourth case is that the distractor is processed first incorrectly, which terminates processing,  

𝑝!0,-.)&9 = (1 − 𝑝0), 

𝑻!0,-.)&9 = 𝑫0,'(#$%%&#! + 𝑹*&), 

with 

 𝜇!0,-.)&9 = E*𝑫0,'(#$%%&#!, + E*𝑹*&),,  

𝜎!0,-.)&9, = Var*𝑫0,'(#$%%&#!, + Var*𝑹*&),. 

The fifth case is that the distractor is processed first correctly and then the target is processed 

correctly,  
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𝑝!0,-.)&: = 𝑝0𝑝! , 

𝑻!0,-.)&: = 𝑫0,#$%%&#! +𝑫!,#$%%&#! + 𝑹*&), 

with 

𝜇!0,-.)&: = E*𝑫0,#$%%&#!, + E*𝑫!,#$%%&#!, + E*𝑹*&),, 

𝜎!0,-.)&:, = Var*𝑫0,#$%%&#!, + Var*𝑫!,#$%%&#!, + Var*𝑹*&),. 

The sixth case is that the distractor is processed first correctly and then the target is processed 

incorrectly,  

𝑝!0,-.)&; = 𝑝0(1 − 𝑝!), 

𝑻!0,-.)&; = 𝑫0,#$%%&#! +𝑫!,'(#$%%&#! + 𝑹($ , 

with 

𝜇!0,-.)&; = E*𝑫0,#$%%&#!, + E*𝑫!,'(#$%%&#!, + E[𝑹($], 

𝜎!0,-.)&;, = Var*𝑫0,#$%%&#!, + Var*𝑫!,'(#$%%&#!, + Var[𝑹($]. 

The probability of a correct response is achieved through the mutually exclusive cases 1, 3, 4 and 

5.  Specifically, it is the probability that the target is processed first (0.5) and results in Case 1 or 

Case 3, plus the probability that the distractor is processed first (0.5) and results in Case 4 or 

Case 5,  

𝑝!0 = 0.5(𝑝! + (1 − 𝑝!)(1 − 𝑝0)) + 0.5((1 − 𝑝0) + 𝑝!𝑝0) 

= 1 − 𝑝0 + 𝑝!𝑝0 .																																																														 

For the four cases that contribute to a correct response, the weights are  

𝑤+ =
0.5	𝑝!0,-.)&+

𝑝!0
=

0.5	𝑝!
(1 − 𝑝0 + 𝑝!𝑝0)

	,								 

𝑤1 =
0.5	𝑝!0,-.)&1

𝑝!0
=
0.5	(1 − 𝑝!)(1 − 𝑝0)
(1 − 𝑝0 + 𝑝!𝑝0)

	, 
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𝑤9 =
0.5	𝑝!0,-.)&9

𝑝!0
=

0.5	(1 − 𝑝0)
(1 − 𝑝0 + 𝑝!𝑝0)

	,								 

𝑤: =
0.5	𝑝!0,-.)&:

𝑝!0
=

0.5	𝑝!𝑝0
(1 − 𝑝0 + 𝑝!𝑝0)

	.							 

Using these weights, the expected correct response time is, 

𝜇!0,#$%%&#! = 𝑤+𝐸*𝑻!0,-.)&+, + 𝑤1𝐸*𝑻!0,-.)&1, + 𝑤9𝐸*𝑻!0,-.)&9, + 𝑤:𝐸*𝑻!0,-.)&:,																							 

=
0.5𝑝!

(1 − 𝑝0 + 𝑝!𝑝0)
R𝐸[𝑫!,#$%%&#!] + 𝐸[𝑹*&)]S

+	
0.5(1 − 𝑝!)(1 − 𝑝0)
(1 − 𝑝0 + 𝑝!𝑝0)

R𝐸[𝑫!,'(#$%%&#!] + 𝐸[𝑫0,'(#$%%&#!] + 𝐸[𝑹*&)]S

+
0.5(1 − 𝑝0)

(1 − 𝑝0 + 𝑝!𝑝0)
R𝐸[𝑫!,'(#$%%&#!] + 𝐸[𝑹*&)]S 	

+	
0.5𝑝!𝑝0

(1 − 𝑝0 + 𝑝!𝑝0)
R𝐸[𝑫0,#$%%&#!] + 𝐸[𝑫!,#$%%&#!] + 𝐸[𝑹*&)]S 

=
0.5𝑝!(1 + 𝑝0)
(1 − 𝑝0 + 𝑝!𝑝0)

𝐸*𝑫!,#$%%&#!, +	
0.5(1 − 𝑝!)(1 − 𝑝0)
(1 − 𝑝0 + 𝑝!𝑝0)

𝐸*𝑫!,'(#$%%&#!, 														

+
0.5𝑝!𝑝0

(1 − 𝑝0 + 𝑝!𝑝0)
𝐸[𝑫0,#$%%&#!] 	

+ 	
0.5(1 − 𝑝0) + (1 − 𝑝!)(1 − 𝑝0)

(1 − 𝑝0 + 𝑝!𝑝0)
𝐸[𝑫0,'(#$%%&#!] + 𝐸[𝑹*&)]. 

The variance of the correct response time as a mixture of Cases 1, 3, 4, and 5 is, 

𝜎!0,#$%%&#!, = (𝑤+𝜎!0,-.)&+, +𝑤1𝜎!0,-.)&1, +𝑤9𝜎!0,-.)&9, +𝑤:𝜎!0,-.)&:, )

+ R𝑤+𝜇!0,-.)&+, +𝑤1𝜇!0,-.)&1, +𝑤9𝜇!0,-.)&9, +𝑤:𝜇!0,-.)&:, − 𝜇!0,#$%%&#!, S. 

Similarly, the expected incorrect response time is due to Cases 2 and 6.  The weights are  

𝑤, =
0.5	𝑝!0,-.)&,

𝑝!0
=

0.5	(1 − 𝑝!)𝑝0
0.5	(1 − 𝑝!)𝑝0 + 0.5	𝑝0(1 − 𝑝!)

= 0.5,								 

𝑤; =
0.5	𝑝!0,-.)&;

𝑝!0
=

0.5	𝑝0(1 − 𝑝!)
0.5	(1 − 𝑝!)𝑝0 + 0.5	𝑝0(1 − 𝑝!)

= 0.5. 
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Using these weights, the expected incorrect response time is, 

𝜇!0,'(#$%%&#! = 𝑤,𝐸[𝑻!0,-.)&,] + 𝑤;𝐸[𝑻!0,-.)&;]	

																							= 0.5R𝐸[𝑫!,'(#$%%&#!] + 𝐸[𝑫0,#$%%&#!] + 𝐸[𝑹($]S 		

+ 0.5R𝐸[𝑫0,#$%%&#!] + 𝐸[𝑫!,'(#$%%&#!] + 𝐸[𝑹($]S										 

= 𝐸*𝑫!,'(#$%%&#!, + 𝐸*𝑫0,#$%%&#!, + 𝐸[𝑹($]. 

The variance of the incorrect response time as a mixture of Cases 2 and 6 is, 

𝜎!0,'(#$%%&#!, = (𝑤,𝜎!0,-.)&,, +𝑤;𝜎!0,-.)&;, ) + R𝑤,𝜇!0,-.)&,, +𝑤;𝜇!0,-.)&;, − 𝜇!0,'(#$%%&#!, S. 

Standard Self-terminating, Unlimited-capacity, Parallel Model with Errors 

 We generalize the standard self-terminating, unlimited-capacity, parallel model without 

errors to include errors, and ask whether the introduction of errors changes the prediction.  In the 

literature, the parallel model without errors predicts that the correct response time for two targets 

is faster than for one target.  We examine the prediction when including errors in the generalized 

parallel model.  The task description discussed in the first section is the same, and the notation is 

the same as introduced for the Standard Self-terminating Serial Model with Errors.  The 

difference from the serial model is that, instead of component processes being executed 

sequentially, in the parallel model the component processes are executed in parallel.  As with the 

serial model, context independence is assumed with a strong degree of independence between 

component processes in terms of accuracy and component processing time.   

Predictions of the Standard Self-terminating, Unlimited-capacity, Parallel Model with Errors 

Consider stimulus conditions with either a single target 𝑡 or two targets 𝑡𝑡.  As before, 

our goal is to describe the processes of the two-stimulus conditions in terms of the single-

stimulus component processes.  For a single target, the parallel model has the same definition 

and corresponding prediction as the serial model.   
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For a single target condition 𝑡, the predicted probability of a correct response is  

 𝑝! = 𝑃(𝒁! = 1). (7) 

The random variable for the correct response time to a target is, 

 𝑻!,#$%%&#! = 𝑫!,#$%%&#! + 𝑹*&). 

The expected response time for a correct response to a single target is then the sum of the 

expected values of that 𝑫!,#$%%&#! and 𝑹*&), 

 𝜇!,#$%%&#! = E*𝑫!,#$%%&#!, + E*𝑹*&),.																																													(8)  

Similarly, the random variable for the incorrect response time to a target is, 

𝑻!,'(#$%%&#! = 𝑫!,'(#$%%&#! + 𝑹($													 

with expected value as, 

 𝜇!,'(#$%%&#! = E*𝑫!,'(#$%%&#!, + E[𝑹($].  

For the two-target condition 𝑡𝑡, consider three mutually exclusive cases that describe the 

possible processing sequences of the parallel model: 

Case 1: Each stimulus is processed correctly in parallel.  The response is reported as soon 

as a target is detected whichever process is completed first, and then processing is 

terminated, even though the other stimulus is partially processed. 

Case 2: One stimulus is processed correctly, and the other stimulus is processed 

incorrectly.  The response is reported when the stimulus that is processed 

correctly completes processing, regardless of whether the other stimulus has 

completed processing or is partially processed. 

Case 3: Each stimulus is processed incorrectly. The response is reported after both stimuli 

have been processed. 

The probabilities and response times follow by case. 
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Case 1: The probability that Case 1 occurs is equal to the probability that both stimuli are 

processed correctly.  Using the independence of component accuracy to one stimulus (𝑡+) to the 

other (𝑡,), the probability that Case 1 occurs is, 

𝑝!!,-.)&+ = 𝑃R𝒁!! = 1, 𝒁!" = 1S = 𝑝!,. 

The correct response time for Case 1 is the processing time for the stimulus that was completed 

first plus the residual time, also because of context independence, 

𝑻!!,-.)&+ = min	{𝑫!!,#$%%&#! , 𝑫!",#$%%&#!} + 𝑹*&). 

The expected correct response time for Case 1 is, 

𝜇!!,-.)&+ = 𝐸[min	{𝑫!!,#$%%&#! , 𝑫!",#$%%&#!}] + 𝐸[𝑹*&)]. 

Case 2: The probability that Case 2 occurs is equal to the probability that one stimulus is 

processed correctly and that the other stimulus is processed incorrectly. By context independence 

and stochastic independence, the probability that Case 2 occurs can be expressed in terms of 

single stimulus probabilities, 

𝑝!!,-.)&, = 𝑃R𝒁!! = 0	and	𝒁!" = 1,		or		𝒁!! = 1	and	𝒁!" = 0S = 2(1 − 𝑝!)𝑝! .	 

The correct response time for Case 2 is the time that one stimulus is processed correctly, 

regardless of whether the other stimulus has completed processing or is partially processed. The 

response has to wait until the correct response has completed processing, no matter whether the 

incorrect component processing time is greater or less than the correct component processing 

time. Again, by context independence and stochastic independence, the correct response time for 

Case 2 is,	

𝑻!!,-.)&, = 𝑫!,#$%%&#! + 𝑹*&). 

The expected correct response time for Case 2 is, 

𝜇!!,-.)&, = 𝐸[𝑫!,#$%%&#!] + 𝐸[𝑹*&)]. 
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Case 3: The probability that Case 3 occurs in the parallel model is equal to the probability 

that both stimuli are processed incorrectly.  By context independence and stochastic 

independence,  

𝑝!!,-.)&1 = 𝑃R𝒁!! = 0	and	𝒁!" = 0S = (1 − 𝑝!),. 

The incorrect response time for Case 3 in the parallel model is the longest processing time for an 

incorrect response plus the residual time, 

𝑻!!,-.)&1 = max	{𝑫!!,'(#$%%&#! , 𝑫!",'(#$%%&#!} + 𝑹($ . 

The expected incorrect response time for Case 3 is, 

𝜇!!,-.)&1 = 𝐸[max	{𝑫!!,'(#$%%&#! , 𝑫!",'(#$%%&#!}] + 𝐸[𝑹($]. 

In the two-target condition, a correct response is achieved in Case 1 and in Case 2, 

resulting in a mixture distribution.  The probability of a correct response is the probability of 

Case 1 plus the probability of Case 2, because they are mutually exclusive, 

𝑝!! = 𝑝!!,-.)&+ + 𝑝!!,-.)&, 

							= 𝑝!𝑝! + 2(1 − 𝑝!)𝑝! 

																																																													= 2	𝑝! − 𝑝!,.																																																																	(9) 

The expected response time for a correct response to a two-target condition, 𝜇!!,#$%%&#!, is the 

weighted average of the expected response times for Case 1 and Case 2.  The weight for Case 1 

is the proportion of correct responses for Case 1, i.e., the ratio of the probability of Case 1 to the 

probability of Case 1 or Case 2, 

𝑤-.)&+ =
𝑝!!,-.)&+

R𝑝!!,-.)&+ + 𝑝!!,-.)&,S
=

𝑝!𝑝!
(2𝑝! − 𝑝!,)

=
𝑝!

(2 − 𝑝!)
. 

Similarly, 

𝑤-.)&, =
𝑝!!,-.)&,

R𝑝!!,-.)&+ + 𝑝!!,-.)&,S
=
𝑝!(1 − 𝑝!)	
(2𝑝! − 𝑝!,)

=
(1 − 𝑝!)
(2 − 𝑝!)

	. 
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Using these weights, the expected correct response time is, 

𝜇!!,#$%%&#! = 𝑤-.)&+𝐸[𝑻!!,-.)&+] + 𝑤-.)&,𝐸[𝑻!!,-.)&,]																																																																													 

= 𝑤-.)&+𝜇!!,-.)&+ +𝑤-.)&,	𝜇!!,-.)&,																																																																																																			 

= .
𝑝!

2 − 𝑝!
0 R𝐸*min4𝑫!!,#$%%&#! , 𝑫!",#$%%&#!6, + 𝐸*𝑹*&),S

+ .
1 − 𝑝!
2 − 𝑝!

0 R𝐸*𝑫!,#$%%&#!, + 𝐸*𝑹*&),S																																																																						 

= .
𝑝!

2 − 𝑝!
0 𝐸[min	{𝑫!!,#$%%&#! , 𝑫!",#$%%&#!}] +		.

1 − 𝑝!
2 − 𝑝!

0𝐸[𝑫!,#$%%&#!] + 𝐸[𝑹*&)].									(10)	 

The incorrect response time is given by Case 3 alone. The expected incorrect response time is, 

𝜇!!,'(#$%%&#! = 𝐸[max	{𝑫!!,'(#$%%&#! , 𝑫!",'(#$%%&#!}] + 𝐸[𝑹($]. 

Our main focus is on the difference between the expected correct response time for one 

target and the expected correct response time for two targets.  The difference is constructed so 

that a faster response time to two targets results in a positive difference.  Using Equations (8) and 

(10), the difference is,  

𝜇!,#$%%&#! − 𝜇!!,#$%%&#!

= R𝐸*𝑫!,#$%%&#!, + 𝐸*𝑹*&),S 	

− \.
𝑝!

2 − 𝑝!
0𝐸*min4𝑫!!,#$%%&#! , 𝑫!",#$%%&#!6, + .

1 − 𝑝!
2 − 𝑝!

0 𝐸*𝑫!,#$%%&#!,

+ 𝐸*𝑹*&),] 

= .
2 − 𝑝! − 1 + 𝑝!

2 − 𝑝!
0𝐸*𝑫!,#$%%&#!, − .

𝑝!
2 − 𝑝!

0 𝐸*min4𝑫!!,#$%%&#! , 𝑫!",#$%%&#!6, 

= .
	1

2 − 𝑝!
0𝐸*𝑫!,#$%%&#!, − .

𝑝!
2 − 𝑝!

0 𝐸*min4𝑫!!,#$%%&#! , 𝑫!",#$%%&#!6,.									(11) 
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When there are no errors, i.e., 𝑝! = 1, the difference is positive, since 𝐸*𝑫!,#$%%&#!, ≥

𝐸*min4𝑫!!,#$%%&#! , 𝑫!",#$%%&#!6,.	 Even with errors ( 0 < 𝑝! < 1), the difference is still positive 

because L 	+
,23'

O ≥ L 3'
,23'

O and 𝐸*𝑫!,#$%%&#!, ≥ 𝐸*min4𝑫!!,#$%%&#! , 𝑫!",#$%%&#!6,.  Thus, this 

parallel model predicts that a correct response time for two targets is faster than the correct 

response time for one target. 

Next consider the difference between the probability of a correct response for two targets 

and the probability of a correct response for one target.  The difference is constructed so that an 

increase in accuracy for two targets results in a positive difference.  Using Equations (7) and (9), 

the difference is,  

																																	(2	𝑝! − 𝑝!,) − 𝑝! = 𝑝! − 𝑝!,																																										(12) 

which is greater than or equal to zero because 𝑝! ≥ 𝑝!,.  Thus, redundant targets improve 

accuracy. 

 For completeness, the other predictions of this parallel model are given next. 

For a single distractor condition 𝑑, by definition,  

𝑝0 = 𝑃(𝒁0 = 1), 

𝑻0,#$%%&#! = 𝑫0,#$%%&#! + 𝑹($ ,	and 

𝑻0,'(#$%%&#! = 𝑫0,'(#$%%&#! + 𝑹*&). 

The expected values are, 

 𝜇0,#$%%&#! = E*𝑫0,#$%%&#!, + E[𝑹($],  

𝜇0,'(#$%%&#! = E*𝑫0,'(#$%%&#!, + E*𝑹*&),. 
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For the two-distractor condition 𝑑𝑑, there are three cases. The first case is when both 

distractors are processed correctly, in parallel.  For this case, the response time is determined by 

the last component process completed.  The probability that Case 1 occurs is,  

𝑝00,-.)&+ = 𝑃(𝒁0 = 1	𝑎𝑛𝑑	𝒁0 = 1) = 𝑝0,. 

The correct processing time for Case 1 is, 

𝑻00,-.)&+ = max	{𝑫0!,#$%%&#! , 𝑫0",#$%%&#!} + 𝑹($ , 

with 

𝜇00,-.)&+ = E*max	{𝑫0!,#$%%&#! , 𝑫0",#$%%&#!}, + E[𝑹($]. 

The second case is when one distractor is processed incorrectly and the other distractor is 

processed correctly, in which case the processing is terminated when the distractor is processed 

incorrectly.  The probability that Case 2 occurs is,	

𝑝00,-.)&, = 𝑃R𝒁0! = 0	and	𝒁0" = 1	or	𝒁0! = 1	and	𝒁0" = 0S = 2𝑝0(1 − 𝑝0). 

The incorrect processing time for Case 2 is, 

𝑻00,-.)&, = 𝑫0,'(#$%%&#! + 𝑹*&), 

with 

 𝜇00,-.)&, = E*𝑫0,'(#$%%&#!, + E*𝑹*&),. 

The third case is when both distractors are processed incorrectly.  In this case, the response time 

is determined by the fastest of the two component processes.  The probability that Case 3 occurs 

is,	

𝑝00,-.)&1 = 𝑃R𝒁0! = 0	and	𝒁0" = 0S = (1 − 𝑝0),.	

The incorrect processing time for Case 3 is, 

𝑻00,-.)&1 = min	{𝑫0!,'(#$%%&#! , 𝑫0",'(#$%%&#!} + 𝑹*&), 

with 
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𝜇00,-.)&1 = E*min	{𝑫0!,'(#$%%&#! , 𝑫0",'(#$%%&#!}, + E*𝑹*&),. 

Only the first case yields a correct response, thus 

𝑝00 = 𝑝00,-.)&+ = 𝑝0,, and	 

𝑻00,-.)&+ = max	{𝑫0!,#$%%&#! , 𝑫0",#$%%&#!} + 𝑹($ , 

with 

𝜇00,-.)&+ = E*max	{𝑫0!,#$%%&#! , 𝑫0",#$%%&#!}, + E[𝑹($]. 

The other two cases yield incorrect responses, yielding a mixture distribution. The weight for 

Case 2 is the fraction of incorrect responses due to Case 2 relative to all incorrect responses, 

𝑤-.)&, =
2𝑝0(1 − 𝑝0)

(2𝑝0(1 − 𝑝0) + (1 − 𝑝0),)
=

2𝑝0
1 + 𝑝0

	.	 

Similarly, the fraction of incorrect responses due to Case 3 relative to all incorrect responses is, 

𝑤-.)&1 =
(1 − 𝑝0),

(2𝑝0(1 − 𝑝0) + (1 − 𝑝0),)
=
1 − 𝑝0
1 + 𝑝0

	. 

The weighted combination of Cases 2 and 3 yields the expected incorrect response time, 

𝜇00,'(#$%%&#! = 𝑤5678,𝐸[𝑻00,-.)&,] + 𝑤56781𝐸[𝑻00,-.)&1]																																																																	 

= .
2𝑝0
1 + 𝑝0

0 RE*𝑫0,'(#$%%&#!, + E*𝑹*&),S

+ .
1 − 𝑝0
1 + 𝑝0

0 RE*min	{𝑫0!,'(#$%%&#! , 𝑫0",'(#$%%&#!}, + E*𝑹*&),S																										 

= .
2𝑝0
1 + 𝑝0

0 RE*𝑫0,'(#$%%&#!,S + .
1 − 𝑝0
1 + 𝑝0

0 RE*min	{𝑫0!,'(#$%%&#! , 𝑫0",'(#$%%&#!},S + E*𝑹*&),. 

For the one target and one distractor condition 𝑡𝑑, there are four mutually exclusive 

cases. The cases are distinguished by whether the target is processed correctly or incorrectly, 

coupled with whether the distractor is processed correctly or incorrectly. The first case is that the 
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target is processed correctly and the distractor is processed correctly. Here, only the processing 

of the target determines the response time. The probability that Case 1 occurs is,  

𝑝!0,-.)&+ = 𝑝!𝑝0 

𝑻!0,-.)&+ = 𝑫!,#$%%&#! + 𝑹*&), 

with  

𝜇!0,-.)&+ = E*𝑫!,#$%%&#!, + E*𝑹*&),. 

The second case is that the target is processed correctly and the distractor is processed 

incorrectly. Now, there is a race between the two processing times. The probability that Case 2 

occurs is,  

𝑝!0,-.)&, = 𝑝!(1 − 𝑝0), 

𝑻!0,-.)&, = min	{𝑫!,#$%%&#! , 𝑫0,'(#$%%&#!} + 𝑹*&), 

with 

𝜇!0,-.)&, = E*min4𝑫!,#$%%&#! , 𝑫0,'(#$%%&#!6, + E*𝑹*&),. 

The third case is that the target is processed incorrectly and the distractor is processed correctly.  

Now both processes must complete to determine a response.  The probability that Case 3 occurs 

is, 

𝑝!0,-.)&1 = (1 − 𝑝!)𝑝0 , 

𝑻!0,-.)&1 = max	{𝑫!,'(#$%%&#! , 𝑫0,#$%%&#!} + 𝑹($ , 

with 

𝜇!0,-.)&1 = E*max	{𝑫!,'(#$%%&#! , 𝑫0,#$%%&#!}, + E[𝑹($]. 

The fourth case is that the target is processed incorrectly, and the distractor is processed 

incorrectly.  Here, the distractor processing determines the response time.  The probability that 

Case 4 occurs is, 
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𝑝!0,-.)&9 = (1 − 𝑝!)(1 − 𝑝0), 

𝑻!0,-.)&9 = 𝑫0,'(#$%%&#! + 𝑹*&), 

with 

 𝜇!0,-.)&9 = E*𝑫0,'(#$%%&#!, + E*𝑹*&),.  

The probability of a correct response is achieved through the mutually exclusive cases 1, 2, and 

4.  It is the probability that the target is processed correctly, as in Case 1 or Case 2, plus the 

probability that the distractor is processed incorrectly as in Case 4,  

𝑝!0 = 𝑝!𝑝0 + 𝑝!(1 − 𝑝0) + (1 − 𝑝!)(1 − 𝑝0) 

= 1 − 𝑝0(1 − 𝑝!). 

For the three cases that contribute to a correct response, the weights are  

𝑤+ =
𝑝!0,-.)&+
𝑝!0

=
	𝑝!𝑝0

(1 − 𝑝0(1 − 𝑝!))
	,								 

𝑤, =
𝑝!0,-.)&,
𝑝!0

=
𝑝!(1 − 𝑝0)

(1 − 𝑝0(1 − 𝑝!))
	, 

𝑤9 =
𝑝!0,-.)&9
𝑝!0

=
(1 − 𝑝!)(1 − 𝑝0)
(1 − 𝑝0(1 − 𝑝!))

	.								 

Using these weights, the expected correct response time is, 

𝜇!0,#$%%&#! = 𝑤+𝐸*𝑻!0,-.)&+, + 𝑤,𝐸*𝑻!0,-.)&,, + 𝑤9𝐸*𝑻!0,-.)&9,																							 

which does not simplify nicely. 

The expected incorrect response time is solely due to Case 3, and is, 

𝜇!0,-.)&1 = E*max	{𝑫!,'(#$%%&#! , 𝑫0,#$%%&#!}, + E[𝑹($]. 

The standard self-terminating, unlimited-capacity, parallel model with errors does not 

allow quantitative predictions, as in the corresponding serial model.  The minimum and 
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maximum terms prevent such specific quantitative predictions.  Nevertheless, one can make the 

qualitative prediction that the response time is always reduced with two targets compared to one. 

Standard Self-terminating, Fixed-capacity, Parallel Model with Errors 

We next consider a fixed-capacity version of our standard self-terminating, parallel 

model with errors.  The term fixed capacity is from information theory (Taylor et al., 1967) and 

means that a constant amount of information is processed from the entire set of stimuli. Thus, 

assuming equal allocation, half as much information can be extracted from each of two stimuli as 

can be extracted from one stimulus alone.  This idea can be implemented using a sampling 

process described by Shaw (1980).  Such a fixed-capacity model is a special case of a limited-

capacity model.  The fixed-capacity parallel model provides a useful landmark among the wide 

range of possible limited-capacity models (e.g., White, Palmer, & Boynton, 2018). 

Our goal in analyzing this model is to determine if it predicts that redundant targets have 

faster response time than single targets, such as found for our unlimited-capacity parallel model.  

Alternatively, capacity limits might overwhelm the redundancy gain and result in slower 

response times as found for our serial model.  Establishing this prediction helps distinguish serial 

and parallel models in general.   

One can start from the parallel model described in the preceding section by replacing the 

unlimited-capacity assumption with fixed capacity.  Unfortunately, we know of no way to 

analyze such a distribution-free model. Instead, we define two special cases of the fixed-capacity 

model and derive numerical predictions.  To foreshadow the results, the two versions have quite 

different predictions. 
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Version 1: Simple diffusion processes. 

To begin, assume all of the model structure of the previous unlimited-capacity parallel 

model and add a specific stochastic process that generates the responses and response times.  In 

this version, we use a simple diffusion process that has often been applied to response time (e.g., 

Palmer, Huk, & Shadlen, 2005) and has been elaborated as a theory of visual search (Corbett & 

Smith, 2020). 

Consider 𝑛 stimuli, where each stimulus can be a target 𝑡 or a distractor 𝑑.  For the 

current task, a diffusion process applied to response time describes the continuous accumulation 

of relative evidence for the presence of the target 𝑡	versus the presence of a distractor 𝑑.  Let the 

accumulated evidence for stimulus 𝑖, 𝑖 = 1,… , 𝑛, correspond to a random variable that varies 

over time 𝑼'(𝑥) where 𝑥 is time.  At time zero, 𝑼'(0) = 0.  As time increases, evidence is 

accumulated from a target at a mean rate 𝑟! and from a distractor at a mean rate −𝑟0.  (For the 

details of representing evidence as a signal-to-noise ratio, see Palmer, et al., 2005).  The change 

for the fixed-capacity model is that the rate for this model is reduced by a factor of 1/√2 relative 

to an unlimited-capacity model.  This is the result of the rate being determined by a set of 

independent samples that are equally allocated when there are multiple stimuli (Shaw, 1980).  

With two stimuli, half as many samples can be allocated, as to a single stimulus.  This results in 

twice the variability, or √2 the standard deviation of the estimate of the stimulus information.  

This scales the effect of the stimulus by 1/√2.  For example, if 𝑟! and 𝑟0 are 2.0 for the 

unlimited capacity model, they would be 1.41 for the fixed-capacity model. 

The response occurs by evaluating the accumulated evidence for each stimulus.  Starting 

at time zero, all stimuli are unlabeled, and as time increases, the evidence is evaluated to label 

the stimuli with a positive or negative decision, as follows. 
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• At time step x, for unlabelled stimuli, evaluate 𝑼'(𝑥): 

o If 𝑼'(𝑥) > 𝑎, then label stimulus 𝑖	with a positive decision, and terminate with a 

“yes” response.  

o If 𝑼'(𝑥) < −𝑏, then label stimulus 𝑖	with a negative decision, and continue. 

• If all stimuli are labeled with a negative decision, terminate with a “no” response.  Otherwise, 

increment the time step and repeat. 

 To complete the definition of the fixed-capacity diffusion model, we fix the coefficient of 

variability of the residual time to 0.1.  This value for the coefficient of variability is motivated by 

the idea that the residual processes are stereotyped and have a relatively low variance.  In 

contrast, the component processing time from the diffusion process typically has a much larger 

coefficient of variability of around 0.8 to 1.0.  The variability of the total response time is the 

sum of the variability of the residual time and the component processing time.  The coefficient of 

variability for the total response time found in perceptual tasks varies from 0.1 for strong stimuli 

(dominated by the residual time) to 0.5 for weak stimuli (contributions from both residual time 

and component processing time).  While useful for specifying the models, this residual time 

parameter has no effect on the redundant target effect. 

 To calculate the predictions of this model, we first choose parameter values relative to 

Experiment 2.  All together there are six parameters and they are listed in Table A1. 

To do this, the experiment is summarized by the mean proportion correct, mean correct response 

time, and mean coefficient of variability for the correct response times for the single target and 

single distractor conditions, averaged over the three tasks (color, lexical, and semantic).  This 

gives six statistics describing the data.  Then the six model parameters are estimated that yield 

the six statistics.  The estimated parameter values are listed in Table A1.   
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Table A1: Parameters for the Diffusion Model 

Parameter Symbol Experiment 2 Values Experiment 3 Values 

rate for a target 𝑟! 2.545 1.650 

rate for a distractor 𝑟0 2.200 2.829 

upper bound 𝑎 0.593 0.308 

lower bound  −𝑏 0.425 0.962 

mean residual time 

for a “yes” response 

𝐸[𝑹*&)] 0.628 0.593 

mean residual time 

for a “no” response 

E[𝑹($] 0.667 0.616 

 

Importantly, all of this is done with just the single stimulus conditions in Experiment 2.  Finally, 

using these parameters, we calculate the predicted effects of two targets compared to a single 

target.  For this experiment, the fixed-capacity model predicts that two targets are faster and 

more accurate than a single target (gain of 22 ms and 7.1% correct). 

 Next consider parameters based on the data from Experiment 3.  As above, we determine 

six parameter values based on six statistics.  The estimates are given in Table A1.  For these 

conditions, the fixed-capacity model also predicts that two targets are faster and more accurate 

than one (gain of 62 ms and 2.4% correct).  Thus, these conditions also yield positive redundant 

target effects.  We explored the parameter values for the conditions of each experiment. For all 

conditions that avoid extreme parameters, the redundant target effect remains positive. 

 In summary, we evaluated a fixed-capacity parallel model that depends on a simple 

diffusion process.  For all conditions expected in a typical experiment, the fixed-capacity parallel 
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model predicts a positive effect of redundant targets.  Thus, the predictions of this version of a 

fixed-capacity parallel model are distinct from the predictions of negative redundant target 

effects made by our standard self-terminating serial model. 

Version 2: Linear ballistic accumulators. 

A different model of response time is the linear ballistic accumulator (LBA) model 

(Brown and Heathcote, 2008).  It differs from the simple diffusion model in several ways.  First, 

the stochastic element is variability in the rate of accumulation from trial to trial, instead of from 

moment to moment.  Second, there are separate accumulators for each response, instead of 

comparing positive and negative evidence within a single accumulator.  Third, there is a “bias” 

contribution to the rate of accumulating evidence for each accumulator, instead of separate 

bounds for the net positive and negative evidence.  We implemented a particularly simple 

version of this model.  The variability of the rate parameter was described by a Gamma 

distribution (Terry et al., 2015) to avoid the complications of negative rates that occurred in the 

original formulation arising from using a Gaussian distribution.  In addition, we dropped the 

feature of variability in the start point.  Finally, the predictions from the redundant target 

conditions were implemented following the derivation in Eidels, Donkin, Brown, & Heathcote, 

(2010).  

For this model, the accumulated evidence for a “yes” or “no” response is in separate 

accumulators, denoted 𝑌 or 𝑁, respectively.  Such a pair of accumulators exists for each stimulus 

𝑖, 𝑖 = 1,… , 𝑛.  The accumulated evidence for stimulus 𝑖 corresponds to two random variables, 

denoted 𝑼<$(𝑥) and 𝑼=$(𝑥), where 𝑥 is time. At time zero, 𝑼<$(0) = 0 and 𝑼=$(0) = 0.  

Evidence is accumulated for a target at a rate of 𝑟!< and 𝑟!= for each 𝑌 and 𝑁 accumulator, 

respectively. Similarly, evidence is accumulated for a distractor at a rate of 𝑟0< and 𝑟0= for each 
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𝑌 and 𝑁 accumulator, respectively.  These rates can be interpreted in terms of signal component 

and bias component.  Let the signal for a target be 𝑟!,)'>(.? = 	𝑟!< − 𝑟!= and the bias for a target 

be 𝑟!,@'.) =		 𝑟!=.  Similarly, let the signal for a distractor be 𝑟0,)'>(.? = 	𝑟0= − 𝑟0< and the bias 

for a distractor be 𝑟0,@'.) =		 𝑟0<.  

This separation of signal and bias components is needed to introduce the idea of fixed 

capacity.  The signal rates determine the accuracy of the response.  For example, if 𝑟!,)'>(.? = 0, 

the responses on the target trials are at chance.  To incorporate fixed capacity, the signal rates are 

reduced by a factor of 1/√2 , just as was done in the diffusion model. 

Two additional parameters for this model are: a common bound for all accumulators 𝑏, 

and a common standard deviation for the variability of all rate parameters 𝑟AB. These two 

parameters and all of the rate parameters share a common factor, so one can fix one of these 

parameters. Hence, we set 𝑟AB = 1, which is equivalent to making all of these parameters relative 

to the standard deviation of the rate (see Palmer, et al., 2005).  In addition, to further reduce the 

number of parameters, we set the bound 𝑏 = 1. This is possible because the 𝑟!,@'.) and 𝑟0,@'.)  

parameters act in a similar way to having separate bound for both accumulators. 

A response occurs when the evidence in any “yes” accumulator 𝑼<$(𝑥) reaches the bound 

for a “yes” response, or all of the “no” accumulators reach the bound for a “no” response.  

Starting at time zero, all stimuli are unlabeled, and as time increases, the evidence is evaluated to 

label the stimuli with a positive or negative decision, as follows. 

• At time step x, for unlabelled stimuli, evaluate 𝑼<$(𝑥): and 𝑼=$(𝑥): 

o If 𝑼<$(𝑥) > 𝑏, then label stimulus 𝑖	with a positive decision, and terminate with a 

“yes” response.  
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o If 𝑼=$(𝑥) > 𝑏, then label stimulus 𝑖	with a negative decision, and continue. 

• If all stimuli are labeled with a negative decision, terminate with a “no” response.  Otherwise, 

increment the time step and repeat. 

Finally, to complete the model, we add two residual time parameters: the mean of the 

residual time for a “yes” response 𝐸[𝑹*&)] and the mean of the residual time for a “no” response 

𝐸[𝑹($].  Together, there are six parameters and they are listed in Table A2. 

Table A2: Parameters for the LBA Model 

Parameter Symbol Experiment 2 Values Experiment 3 Values 

signal rate for a target 𝑟!,)'>(.? 2.112 1.257 

signal rate for a 

distractor 

𝑟0,)'>(.? 1.683 2.400 

bias rate for a target 𝑟!,@'.) 0.780 1.416 

bias rate for a 

distractor 

𝑟0,@'.) 1.240 0.227 

mean residual time 

for a “yes” response 

𝐸[𝑹*&)] 0.447 0.319 

mean residual time 

for a “no” response 

E[𝑹($] 0.449 0.502 

 

 As with the diffusion model, we numerically solve for these parameters based on six 

statistics from the single target and single distractor conditions of our experiments.  The six 

parameters with numerical values are listed in Table A2.  From these parameters, the predicted 

redundant target effects were calculated.  For Experiment 2, there was a positive redundant target 
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effect of 3 ms on response time, and 9.3% on accuracy.  In contrast, for Experiment 3, there was 

a negative redundant target effect of −37 ms on response time.  This was accompanied by a 

positive 2.6% effect on accuracy. The important new result is that this model can predict a 

negative redundant target effect. 

 Why do these two versions of the fixed-capacity, parallel model differ regarding the sign 

of the redundant target effect?  We suspect an important factor is the degree of variability in the 

component processing time for each stimulus.  For the diffusion model, this variability is quite 

high, with a coefficient of variability around 1.0.  In contrast, for the linear ballistic accumulator 

model, the variability is determined by the set of parameters.  For Experiment 3, the coefficient 

of variability of the component time for the selected parameters was only 0.25.  Such lower 

variability results in a smaller redundant target effect that can be overcome by the increase in 

processing time due to fixed capacity.  This results in a negative redundant target effect. 

Summary 

We have presented two version of the standard self-terminating, fixed-capacity, parallel 

model with errors. One is based on a diffusion process and the other based on the linear ballistic 

accumulator.  For parameters based on the single stimulus conditions of Experiment 3, these 

models make quite different predictions about the redundant target effect on response time: one 

positive and the other negative. Thus, this general class of model makes no prediction about 

whether the redundant target effect for response time is positive or negative. 

Details about Calculating Predictions of Redundant Target Effects  

In the introduction of the article, Figure 2 showed typical range of predictions of 

redundant target effects for our three landmark models.  Here, we describe the details of how we 

made these predictions. 
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The predictions for the serial model are relatively simple to calculate, based on Equation 

(5).  The only factors affecting the predictions are the mean component processing time for 

errors on target trials (misses) and the proportion of correct responses for a single target.  For all 

predictions and all models, we kept the mean correct response time fixed at 800 ms and percent 

errors at 5%. To set the mean component processing time for errors, we first assumed a residual 

time of 100 ms.  Then, for the upper limit, we assumed equal component processing time for 

correct (hit) and error (misses) responses.  For the lower limit, the mean component processing 

time for errors was assumed to be twice as long as the mean component processing time for 

correct responses.  These predictions span the range expected in a typical experiment.   

For our unlimited-capacity, parallel model, there are no direct numerical predictions from 

Equation (10).  Instead, we rely on the two special cases we have already developed: the 

diffusion model and the linear ballistic accumulator model.  For the upper limit, we used the 

diffusion model with parameters that for the single stimulus trials yield 5% errors, a mean 

response time of 800 ms and coefficient of variability of 0.2.  These constraints were used for 

both target and distractor trials.  The result is a relatively large redundant target effect.  For the 

lower limit, we used the linear ballistic accumulator model in a similar way.  To minimize the 

redundant target effects, we reduced the coefficient of variability to 0.1.  This yielded a relatively 

small redundant target effect.  While these predictions are not tight bounds, they illustrate the 

range of typical effects. 

Lastly, consider the predictions of our fixed-capacity, parallel model.  As with our 

unlimited-capacity model, we rely on the two special cases with all of the same constraints.  For 

this model, the predictions now span a range that includes both positive and negative redundant 

target effects. 


