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Abstract

The scientific study of reading has a rich history that spans disciplines from
vision science to linguistics, psychology, cognitive neuroscience, neurology,
and education. The study of reading can elucidate important general mech-
anisms in spatial vision, attentional control, object recognition, and percep-
tual learning, as well as the principles of plasticity and cortical topography.
However, literacy also prompts the development of specific neural circuits
to process a unique and artificial stimulus. In this review, we describe the se-
quence of operations that transforms visual features into language, how the
key neural circuits are sculpted by experience during development, and what
goes awry in children for whom learning to read is a struggle.
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What an astonishing thing a book is. It’s a flat object made from a tree with flexible parts on which
are imprinted lots of funny dark squiggles. But one glance at it and you’re inside the mind of another
person, maybe somebody dead for thousands of years. Across the millennia, an author is speaking clearly
and silently inside your head, directly to you.

—Carl Sagan, Cosmos

1. INTRODUCTION

The goal of written language is to represent spoken language with a visual code. The challenge
for the human visual system is to transform the complex array of features in a written word into
sound and meaning. The literate brain accomplishes this challenge within a couple of hundred
milliseconds (Bentin et al. 1999, Joo et al. 2021, Nobre et al. 1994, Salmelin et al. 2000, Sereno &
Rayner 2003). In regions of the lateral temporal and frontal cortex implicated in language process-
ing (referred to below as the language cortex), neural responses evoked by a written word closely
approximate those evoked by a spoken word (Pugh et al. 2013, Rueckl et al. 2015). The process of
word recognition begins in visual cortex but ultimately depends on rapid communication between
cortical regions specialized for processing visual, auditory, and linguistic information.

While evolution endowed the human brain with specialized circuits for spoken language, writ-
ten language is a relatively recent invention of human societies. Thus, literacy must emerge from
circuits that evolved for other purposes, demonstrating the power of experience-dependent plas-
ticity to sculpt neural circuits for unique functions. Children learn to read through thousands of
hours of instruction and practice; the neural circuitry of reading develops in response to educa-
tion. This makes reading unique with respect to many other functions of the visual system. For
example, compare visual word recognition and face recognition. In skilled readers, the two abili-
ties have many similarities. Deriving meaning from words on a page of text can be as effortless as
recognizing a friend’s face in a crowd. Moreover, in both cases, rapid recognition depends on spe-
cialized regions that selectively process each category of visual stimuli (Dehaene & Cohen 2011,
Grill-Spector & Weiner 2014, Kanwisher 2010, Wandell et al. 2012, Yeatman et al. 2013).

However, there are important differences between the two skills. The ability to rapidly recog-
nize faces is important for many mammalian species. Face recognition arguably depends on dedi-
cated circuits that have been conserved across evolution (Kanwisher 2010, Kanwisher et al. 1997,
McKone etal. 2012), although this idea is not without debate (Arcaro etal. 2017, 2019; Livingstone
etal. 2017; Tarr & Cheng 2003; Tarr & Gauthier 2000). Face-selective regions in the ventral visual
stream exist very early in life (Deen et al. 2017), and while their development certainly depends
on experience (Arcaro et al. 2017), it does not require explicit instruction and training. In contrast,
word recognition is uniquely human, and visual word-selective regions develop as a consequence
of instruction. Children will not achieve literacy without systematic training and practice. Thus,
the study of literacy provides a natural experiment to understand how experience and learning
interact with processing constraints that are naturally present in the human visual system.

Much of this review focuses on a word-selective region of ventral occipitotemporal cortex
(VOTC) that forms the gateway between the visual and language systems: the visual word form
area (VWFA). The notion of a cortical module specialized for representing the visual form of
words has a rich and contentious history (Bub et al. 1993). Jules Déjerine (1891) described the case
of a patient who suffered a stroke and completely lost the ability to read. Déjerine chose the term
word blindness, or alexia, to describe the patient’s condition because spatial vision was intact; the
patient was able to recognize common objects and navigate the world but was unable to read even
a single word. Déjerine invoked the idea of a visual word form center that developed with literacy
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to store information about orthography. That assertion sparked fierce resistance from the emi-
nent neurologist Carl Wernicke. Wernicke described Déjerine’s model as indefensible and grossly
schematic (see Bub et al. 1993, p. 539). Thus began a debate about whether learned representa-
tions of visual word forms are at the foundation of literacy and reside in a particular brain region
that connects vision and language (Bub et al. 1993, Eggert 1977, Wernicke 1906). The debate has
continued into the twenty-first century (Dehaene & Cohen 2011; Price & Devlin 2003, 2011).

Early neuroimaging studies sought to localize cortical regions that encode visual word forms.
In the early 2000s, it became clear that a swath of cortex extending from the posterior occipitotem-
poral sulcus (OTS) to roughly the midpoint of the fusiform gyrus displayed many of the properties
of Déjerine’s visual word form center. The term VWFA was coined to describe this region that
selectively responds to visual words (Cohen et al. 2000, 2002). Recent studies have found that the
VWEFA is actually composed of at least two subregions (VWFA-1 and VWFA-2) that each per-
form distinct computations on words (Lerma-Usabiaga et al. 2018, White et al. 2019¢). Modern
techniques have allowed for a much more detailed understanding of the coding principles in the
VWEFA and its subregions than Déjerine could have anticipated. However, Déjerine’s hypothesis
has stood the test of time. Thus, we continue to use the term VWFA to refer to the entire word-
selective portion of VOT'C, but we also draw distinctions between the functional and anatomical
properties of the VWFA subregions (VWFA-1/2) where appropriate.

Throughout this review, we often implicate a hierarchy of processing stages, implemented in
distinct brain regions, that transform visual input into language. However, while it is tempting to
view reading as an assembly line, in which the visual system performs a series of operations that are
sent down the line to the language system, reciprocal connectivity between visual and language
areas plays a key role in word recognition (Seidenberg & McClelland 1989). Even recognizing
an isolated word depends on interactions between vision and language. For example, recent evi-
dence suggests that frontal lobe language regions are activated in synchrony with, or potentially
even earlier than, VOTC (Cornelissen et al. 2009, Wheat et al. 2013, Woodhead et al. 2014). The
VWFA receives signals from early visual cortex; is sensitive to image properties that are ubiquitous
across visual cortex, such as image contrast (Kay & Yeatman 2017); and is modulated by selec-
tive spatial attention to particular locations in the visual field (White et al. 2019¢). However, the
VWFA is also sensitive to linguistic properties of written words, such as the sounds represented by
the letters (Glezer et al. 2016, 2019; McCandliss et al. 2003). Moreover, top-down signals
activate the VWFA during many speech perception tasks (Dehaene et al. 2011, Pugh et al. 2013).
Thus, the VWFA is the intersection of vision and language. The anatomy, physiology, and devel-
opment of this region of VOTC is at the foundation of the uniquely human capacity for literacy.

The neural circuitry that transforms vision into language can only be understood in combina-
tion with models of reading behavior. In Section 2, we review key observations of reading behavior
and the sensory and cognitive limitations on word recognition. We then return to a detailed char-
acterization of the neural circuitry that underlies this behavior.

2. OVERVIEW OF READING BEHAVIOR

In spoken language, words are delivered serially, via changes in air pressure over time. Even the
phonemes that constitute each word are delivered sequentially. By contrast, in written language,
many words and their component letters are delivered all at once, via changes in light intensity
across a surface. Nonetheless, it is clear that one cannot comprehend a passage of text all at once.
There are many reasons for this, but the first major bottleneck is imposed by the constraints of
peripheral vision. To illustrate this phenomenon, fixate your gaze on the red dot on the line of text
in Figure 1a. You will find that there is a small window in the central visual field within which
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Crowding, the visual span, and serial versus parallel models of word recognition. (#) A quote from Huey (1908, p. 6). The red dot
represents the current point of fixation. Crowding zones (/ight blue shapes) are wider than they are tall (radial or tangential anisotropy;
see Toet & Levi 1992) and extend farther away from the fovea than toward it to account for the greater interference caused by flankers
that are more eccentric than the target (Bouma 1973). In the next two lines of text, individual letters that have flankers within their
crowding zones have been randomly replaced with other letters that are indistinguishable when crowded (silent substitution; see Pelli
et al. 2007). The two passages should appear very similar when fixating the red dot in either one. The purple arrows indicate the
saccades that a reader might make. () Visual span measurements in one subject (author A.L.W.) using a modified version of the trigram
task from Legge et al. (2001). Trigrams (three-letter combinations) were presented for 117 ms along the horizontal meridian. This plot
is comparable to Legge et al. (2001, figure 5), showing superior accuracy for the outer letter and strong crowding of the middle letter. A
split Gaussian fit to the accuracy measures gives the width of the visual span and reveals the classic hemifield asymmetry for letter
recognition. The left and right sigma parameters printed on the graph are for the middle letter. (¢) Two sentences. Reread them until
you understand the argument for parallel processing. Panel adapted from Snell & Grainger (2019b). (d) Average attention operating
characteristic showing accuracy of semantic categorization of nouns presented to the left and right of fixation. Accuracy matches the
serial model prediction (N = 15). Panel adapted with permission from White et al. (2019c).
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letters and words are recognizable. Outside of that window, letters appear blurry and jumbled.
Nonetheless, skilled readers learn to work within the constraints of their visual system to sample
text at a nearly optimal rate for comprehension: 200-400 words per minute (Rayner et al. 2016).

This section provides an overview of how information arranged on a page gets funneled
through the visual system and into the language system. We first focus on spatial factors: how
orthographic information is sampled across the visual field and how the eyes and attention move
across text. We then focus on temporal factors: whether letters and words are processed serially
or in parallel.

Experimental psychologists have studied how readers extract information from text since at
least the 1870s. Based on subjective experience, many assumed that the eyes smoothly scan over
a page. However, one of the first discoveries in the science of reading was that the eyes make
many short jerky movements (given the French name saccades in 1879; see Javal 1990) down
a line of text (Hering 1879, Lamare 1892, Wade & Tatler 2008). That discovery immediately
raised an important question: How much text is processed during a period of fixation? Initial
measures by Hering (1879) and Lamare (1892) suggested that the amount was quite small, with
an average of 10 letters. In a later experiment, Huey (1900) flashed entire lines of text (cut from
a psychology journal) for 16 ms. The average distance between the leftmost and rightmost letters
that participants could read was approximately 11 letter spaces but varied greatly across trials and
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participants (Huey 1908). It became apparent that the amount of text processed at each moment
is much smaller than many supposed, in part because readers are not aware of their own eye
movements. The above quote from Carl Sagan, therefore, is not quite accurate: It takes more
than one glance at a page to get inside the mind of the writer.

2.1. Crowding as a Fundamental Bottleneck in Word Recognition

Many authors, from the eighteenth century to the present day (e.g., Rayner et al. 2016), supposed
that reading proceeds in a rapid sequence of fixations because of poor acuity outside of the fovea.
Acuity refers to the smallest details that can be resolved in a single shape. Acuity drops off quickly
with eccentricity, being limited by optics, retinal anatomy, and cortical processing (Wandell 1995).
If a letter is too small, then it is difficult to recognize due to poor acuity.

However, for recognizing words, acuity is not typically the limiting factor. In his book, Huey
(1908) reports his own findings [and others by Erdmann & Dodge (1898)] that the initial and final
letters of a long word are more legible than the interior ones, despite being at greater eccentricity
where acuity is worse. At the time, researchers could not explain this observation.

The discovery of visual crowding offered an explanation (for reviews, see Levi 2008, Manassi
& Whitney 2018, Pelli & Tillman 2008, Strasburger 2020). Bouma (1970) showed that the ability
to recognize a single letter decreases as retinal eccentricity increases but also that, at each position,
recognition is impaired by the presence of flanking letters to either side. The amount of interfer-
ence depends on both (#) the target letter’s eccentricity and (b) the distance between the target and
flankers. Specifically, Bouma postulated that interference occurs if the distance between the letters
is approximately less than half the eccentricity, that is, if the flankers lie within the crowding zone,
as illustrated in Figure 1a. Moreover, the effect of a flanker is stronger if it lies to the outside (at
greater eccentricity) of the target than if it lies to the inside of it (Mackworth 1965). In measuring
these phenomena, Bouma (1973) confirmed and explained what Huey (1908) originally described:
that the outer letters of a string are often recognized better because they are less crowded than
the interior ones (see also Bernard & Castet 2019, Nazir et al. 1991).

Therefore, as we try to read words at greater distances from the current point of fixation, let-
ters crowd each other more. Crowding impairs recognition before acuity does. This point was
eloquently stated by Pelli & Tillman (2008), who proposed that visual recognition is only success-
ful in an uncrowded window that is determined not by the size of elements but by the spacing
between them.

The region of the visual field within which letters can be recognized during fixation has been
termed the visual span (O’Regan et al. 1983). Legge and colleagues have standardized a method of
measuring the visual span by having subjects report the identities of three letters presented side by
side at varying distances from fixation (e.g., Legge et al. 2001). Figure 15 shows an example data
set. The width of the span allows approximately 10 letters to be recognized accurately (>80%
correct) under typical reading conditions, consistent with the nineteenth-century measurements
reviewed above. Several studies have argued that the visual span is a front-end bottleneck that
directly constrains reading rate because the span and reading rate are similarly affected by physical
manipulations of the text (Legge et al. 2007, Yu et al. 2007). Pelli et al. (2007) also argued that
the size of the visual span is explained entirely by crowding (contingent upon some bending of
Bouma’s rule).

The formulation of the visual span as an uncrowded window predicts that individuals with a
wider span should read faster and make longer saccades [as suggested by Ehlers (1936)]. Indeed,
the total area of the visual span predicts individual reading speed and increases from childhood
into adulthood before decreasing in later age (Kwon et al. 2007, Liu et al. 2017). Two other
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studies investigated whether the leftward and rightward extents of the visual span predict natural
reading behavior, with mixed results (Fromer et al. 2015, Risse 2014).

The formulation of the visual span also predicts that word recognition in the periphery can be
matched to the fovea by increasing letter size and spacing above the eccentricity-dependent acuity
limit and crowding zone, respectively. However, this is not the case. In general, reading speed
increases with letter size and spacing up to a critical print size and then plateaus at a maximum
speed. The maximum speed in the periphery never matches what is possible at the fovea (Chung
et al. 1998, Latham & Whitaker 1996, Legge et al. 2001). This is an unfortunate constraint for
individuals who have lost foveal vision and must read with a preferred retinal locus in the periphery.
However, there is some evidence that training can speed peripheral reading (He et al. 2013, Yu
etal. 2018).

The relative inefficiency of word recognition in peripheral vision—despite scaling size and
spacing—is still unexplained (Levi 2008, Pelli et al. 2007). It may be a signature of unique charac-
teristics of the reading circuitry, such as the field of view available to the VWFA (Le et al. 2017)
(Figure 2b). More generally, we might ask whether the constraints on reading are general proper-
ties of the visual system or specific consequences of training the system to transform visual shapes
into language.

2.2. The Right Hemifield Advantage: A Unique Characteristic
of Visual Word Recognition

One piece of evidence that the visual system develops specific mechanisms that process text is an
asymmetry in reading performance between the right and left visual fields. Huey (1900) reported
that, when a line of text is flashed briefly, and participants fixate a point in the middle of it, they
often report more words to the right of fixation than to the left. Mishkin & Forgays (1952) found
that single English words are better recognized in the right visual field than in the left. One ex-
planation of these two observations proposes different modes of processing in the two cerebral
hemispheres (Bub & Lewine 1988), with more efficient parallel processing of letter strings in the
left hemisphere (Ellis 2004; but see Whitney & Lavidor 2004).

The hemifield asymmetry also applies to crowded letter recognition (e.g., Bouma 1973, Nazir
et al. 1991) such that the visual span extends farther to the right than to the left of fixation
(Legge et al. 2001), as shown in Figure 15. This may explain the optimal viewing position: Word
recognition is facilitated when the point of fixation is to the left of the word’s center, so that
more letters are to the right (Brysbaert et al. 1996, Nazir et al. 1991, O’Regan & Jacobs 1992).
Similarly, during natural reading, people tend to fixate to the left of word centers (Rayner 1998).

Critically, the right hemifield advantage is stimulus specific. Nonletter shapes and faces either
show no asymmetry or the opposite asymmetry (Fontenot 1973, He etal. 2015, Heron 1957, Hines
1978, Leehey & Cahn 1979). Some have proposed that the right hemifield advantage for words is
caused by a general advantage for high spatial frequencies in the left hemisphere (Sergent 1982),
but that notion has been challenged (Ossowski & Behrmann 2015, Tadros et al. 2013).

Is the hemifield asymmetry in English due to experience reading left to right? Apparently, this
is not the case: Several right-to-left scripts (Arabic, Hebrew, Urdu) also have a right hemifield su-
periority, although perhaps of a smaller magnitude (for reviews, see Almabruk et al. 2011, Siéroff
& Haehnel-Benoliel 2015). Note that the most recent evidence contradicts the first two stud-
ies on the topic (Mishkin & Forgays 1952, Orbach 1952). Therefore, the field is moving toward
the conclusion that the typical right hemifield superiority for reading is likely due to the typi-
cal left hemisphere dominance for language. Confirming this theory, individuals with anomalous
language lateralization have anomalous asymmetries for word recognition (Hunter et al. 2007;
Van der Haegen et al. 2011, 2013).
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The front end of the reading circuitry. () The optic tract (ye/low) and optic radiation (red) carry signals from the retina to the lateral
geniculate nucleus (LGN) and then the primary visual cortex (V1). White matter tracts are taken from the Human Connectome
Project (HCP) White Matter Atlas (Yeh et al. 2018). V1 is colored with eccentricity preferences from the HCP group average

(N = 181) 7T retinotopy data set (Benson et al. 2018) mapped to the average cortical surface (Dale et al. 1999). (b) The field of view of
left V1 and left word-selective cortex (Le et al. 2017). Images represent the portion of the visual field in which words evoke a response.
The color at each visual field position represents the max of population receptive field (pRF) values across all voxels in the region. In
V1, there is full coverage of the contralateral visual field. In word-selective cortex, coverage extends to approximately 10° in the right
(contralateral) and approximately 5° in the left (ipsilateral) visual field. (c) Ventral view of the inflated cortical surface for one example
subject from White et al. (2019c¢). A word presented at 2.75° left or right of fixation evokes a response at the corresponding location in
each retinotopic map: V1, V2, V3, hV4, and VO. Blue shows responses within retinotopic cortex that are larger for words on the left
than for those on the right, and green shows responses that are larger for words on the right than for those on the left. The orange
color map represents responses that are larger for words than for phase-scrambled words. Two patches [visual word form area
(VWEFA)-1 and VWFA-2] were identifiable in the left hemisphere for all 15 subjects. Only one patch (VWFA-1) is usually identifiable
in the right hemisphere. (d) Mean blood oxygen-level dependent (BOLD) responses (N = 15) to single words presented at +/—2.75
deg (White et al. 2019c¢). Error bars = +/—1 standard error. Retinotopic cortex (averaged across V1-VO) responds positively only to
contralateral words. VWFA-1 and -2 respond to words on both sides of fixation, with a contralateral preference.

For a thorough discussion of how stimulus-specific asymmetries arise, the reader is referred to
Behrmann & Plaut (2020). An intriguing hypothesis is that recurrent connections with language
centers help train the visual areas in the language-dominant hemisphere, which best represents
the contralateral visual field, to process text (McCandliss et al. 2003). This hypothesis is in line
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with data showing that the VWFA is colateralized with language (Gerrits et al. 2019, Haegen
et al. 2012) and typically has enhanced representation of the right visual field (Le et al. 2017,
White et al. 2019¢) (Figure 2b).

2.3. Are Letters in a Word Processed Serially or in Parallel?

In this section, we discuss temporal properties of visual word recognition. One important theme
in this area of research is the distinction between parallel and serial processes. It is clear that one
cannot read all of the words in a paragraph in parallel, so there must be a serial mechanism to
process a paragraph in chunks. How big are these chunks? Are they single letters, single words, or
combinations of words?

The shapes of many letters are encoded in parallel by the retina and early visual cortex. Does
that mean that all of the letters in a word are identified in parallel (Grainger et al. 2016) or in a
rapid serial sweep (Whitney 2001)? Do individual letters even need to be identified, or can the
word’s form be recognized holistically? This is an old question, and attempts to answer it began
with the word superiority effect.

Cattell (1886) observed that letters are more quickly identified when embedded in real
words than when embedded in nonword letter strings or even when presented alone. The
evidence for this word superiority effect was strengthened with an unbiased psychophysical
task devised by Reicher (1969) and Wheeler (1970). The effect is difficult (but not impossible;
see Whitney 2008) to explain if one assumes that letters are recognized one at a time, before
whole words are recognized. One of the most influential models of word recognition, the
interactive activation model (McClelland & Rumelhart 1981), proposes that all letters in a
word are identified in parallel, activating representations of words that contain those letters;
recurrent connections then enhance representations of the letters. Thus, knowledge of the whole
word facilitates knowledge of the letters that it contains. The interaction between layers of the
interactive activation model is in line with findings from neuroimaging studies of interactions
between visual cortex and language cortex during the first 200 ms of word recognition (Carreiras
et al. 2014). The role of word-level knowledge affecting letter perception is also demonstrated
by the illusory letters phenomenon: When words are printed at a small size just at the edge of
legibility, and the inner letters are replaced by nonletter shapes, real letters forming whole words
are nonetheless seen (Jordan et al. 1999).

One interpretation of the word superiority effect is that words are recognized as wholes, with-
out first identifying each letter independently. However, Pelli et al. (2003) demonstrated that the
contrast energy required to identify a familiar word increases linearly with its length. This means
thata word is not efficiently recognized as one pattern; it cannot be identified unless its component
letters are identified.

Are all of the letters in a word actually identified in parallel? This is a difficult question to
answer definitively. One line of research measures accuracy for single letters in briefly presented
strings. The first letter is often recognized best, which some researchers believe is evidence of
a serial sweep from left to right (Scaltritti & Balota 2013), but others disagree (Adelman et al.
2010, Tydgat & Grainger 2009). Another approach is to measure the time needed to recognize
single words as a function of their length. A simple serial model would predict a linear increase
in response time. However, for skilled readers, the number of letters in a word has little impact
on recognition speed or accuracy as long as contrast is high, the word fits within the visual span
(Legge etal. 2001), and the word is not in the left visual field (Ellis 2004). Note, however, that gaze
durations during natural reading do increase with word length (Kliegl et al. 2004). Interestingly,
lesions to the left VWFA cause a drastic increase in the effect of word length on recognition times
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Figure 3

The VWFA is linked to reading behavior in children and adults. (#—) Selectivity for words compared to objects in the VWEFA is related
to reading abilities in elementary school children (Kubota et al. 2019). (#) VWFA and FFA localizers in two representative children with
strong reading abilities. The same region is identified when words are contrasted with faces or objects. () The BOLD response to
words, faces, and objects in the VWFA for skilled readers and struggling readers. () As reading abilities increase, so does VWFA
selectivity. VWFA selectivity is computed by comparing the response to words and objects. After surgical resection of the VWEFA,

(d) patients show selective deficits in naming words (Hirshorn et al. 2016), and () reading latency becomes linearly dependent on word
length (Gaillard et al. 2006). (f) Patients with damage to VOTC from a stroke engage in letter-by-letter reading, making saccades
between each letter in a word (Pflugshaupt et al. 2009). Abbreviations: BOLD, blood oxygen level-dependent; FFA, fusiform face area;
RT, response time; VOTC, ventral occipitotemporal cortex; VWFA, visual word form area.

(Figure 3e), suggesting that the mature VWFA processes letter combinations in parallel (Gaillard
et al. 2006, Pflugshaupt et al. 2009).

In summary, letter recognition is a necessary step toward word recognition. Notwithstanding
some ambiguous data, many (but not all) models assume that letters in a word are processed in
parallel, and the left VWFA is likely to be critical for doing so (Gaillard et al. 2006, Glezer et al.
2009, Hirshorn et al. 2016, Pflugshaupt et al. 2009, Strother et al. 2015).

2.4. Are Words on a Line Recognized Serially or in Parallel?

As mentioned above, readers make many saccades across a line of text, moving forward an average
of seven letters each time. Between saccades, readers fixate for 250 ms on average. Both saccade
lengths and fixation durations are highly variable, and many studies explore this variability to
understand the cognitive processes at work (for reviews, see Radach & Kennedy 2013, Rayner
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1998, Rayner et al. 2016). Some words are fixated more than once, but approximately 30% of
words are skipped (especially short function words). Skipping is one clue that, while the eye is
jumping down the line, attention leads the way. This result is not specific to reading; an automatic
attention shift to the peripheral target of an impending saccade occurs in many contexts (Rolfs &
Carrasco 2012).

Experimenters have measured the portion of text that is attended with gaze-contingent reading
paradigms that alter the text as the eyes move. For instance, in the moving window paradigm
(McConkie & Rayner 1975), the text within a window of variable size around the current point of
fixation is intact, but letters outside of that window are replaced by a mask. If the window is too
narrow, then reading is disrupted. However, if the window is the same size as—or larger than—
the amount of text being processed by the reader, then reading proceeds as normal. The smallest
window that does not affect reading is the perceptual span, a measure that is quite different from
the visual span (Frey & Bosse 2018). The perceptual span in English extends only 3—4 characters
to the left of fixation and 14-15 characters to the right (Rayner 1998). In Chinese, it is much
narrower but also asymmetric to the right (Inhoff & Liu 1998). In Hebrew (Pollatsek et al. 1981)
and Arabic (Jordan et al. 2014), that asymmetry is reversed (unlike the hemifield asymmetry for
isolated word recognition). The perceptual span is believed to be influenced by the shifting of
attention, planning of eye movements, and contextual factors in sentence comprehension, unlike
the narrower and less asymmetric visual span.

A variety of other gaze-contingent manipulations have demonstrated that participants do begin
processing words to the right of fixation before the eyes move (Schotter et al. 2012). The type
of information that is extracted from these words (visual, orthographic, semantic, etc.) is a topic
of current debate (Snell & Grainger 2019b). The central issue is whether multiple words are
processed to a high level in parallel, or whether linguistic processing of the next word only begins
after the current word has been recognized.

To account for a cornucopia of eye movement data, research teams around the world have
built computational models that either assume serial processing of words via sequential attention
shifts (Reichle et al. 2006) or allow parallel processing of words under flexibly diffuse attentional
gradients (Engbert et al. 2005, Reilly & Radach 2006, Snell et al. 2018b). Each type of model can
account for a wide range of eye movement phenomena, so discriminating between them has been
difficult.

Psychophysical measures of word recognition can be of assistance. One line of research asks if
multiple words presented simultaneously interact, facilitating or inhibiting judgments (Mullin &
Egeth 1989, Shepherdson & Miller 2014). For instance, judgments of a briefly (170 ms) flashed
target word are influenced by irrelevant flanking words (Snell et al. 2017, 2018a). When the words
around the target form a sentence, the target is reproduced more accurately than when the sen-
tence is scrambled (a sentence superiority effect) (Snell & Grainger 2017, Wen et al. 2019). One
interpretation of this result is that the words were all processed simultaneously. Furthermore, as
argued by Snell & Grainger (2019b), a serial model predicts that words in a sentence should be
perceived in order, and misordered words should be easily detected. This is not always the case, as
you may experience when following the instructions in Figure 1¢ (Mirault et al. 2018). In these
paradigms, however, it is difficult to distinguish perceptual interactions from post-perceptual de-
cision processes (e.g., quickly correcting syntax errors to get the gist of the sentence, using prior
expectations), especially when the time allowed for perceptual processing is not strictly controlled.

One may then directly ask whether skilled readers are capable of recognizing two words at
exactly the same time. White et al. (2018, 2019c, 2020) presented participants with two words on
either side of fixation, flashed briefly and post-masked. On each trial, the participant reported the
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semantic category of one or both words (in a two-alternative forced-choice task). On different
trials, they were precued to attend to just the left word, just the right one, or both. The time
between the words and masks was adjusted so that each participant could achieve approximately
80% correct with focused attention. The threshold onset asynchrony in such tasks has been
found to be surprisingly brief, ranging from 32 to 134 ms (depending on stimulus eccentricity
and mask type).

The question asked was whether, in the same amount of time, participants could categorize
both words. A series of experiments showed that the answer is no. As shown in the attention
operating characteristic in Figure 1d, accuracy was far below the predictions of two different
parallel models. Accuracy matched a serial model that assumes that only one word can be fully
processed on each trial, and that no semantic information is acquired about the other. Note that
Figure 1d also shows the hemifield asymmetry reviewed in Section 3.2: Far greater accuracy is
observed for words to the right of fixation (x axis) than for those to the left (y axis). The serial
result is robust to variations in the display arrangement, masking stimuli, and task requirements
but does not apply to judgments of the text color, which can be identified for two words in parallel
(White et al. 2020).

Not all researchers agree as to the significance of these psychophysical results for natural read-
ing (Snell & Grainger 2019a, White et al. 2019b). Nonetheless, the data demonstrate a serial bot-
tleneck in lexical access: Two independent words cannot be simultaneously recognized as words.
Therefore, although reading begins with massive parallel processing of the retinal image, a small
portion of that image—perhaps just one word—must be selected by attention and funneled into
the language system. The next section reviews the latest research on the brain circuits that imple-
ment that linkage between the visual and language systems.

3. OVERVIEW OF THE READING CIRCUITRY
3.1. The Front End of the Reading Circuitry

The front end of the reading circuitry is no different than that used for other visual functions.
Light reflected (or emitted) by a page (or screen) of text is encoded as neural impulses in the retina.
Signals from retinal ganglion cells are carried to the lateral geniculate nucleus of the thalamus by
the optic nerve and optic tract, and then to the primary visual cortex (V1) by the optic radiations
(Figure 24).

Retinotopy is a fundamental organizing principle for much of the mammalian visual system.
In V1, individual neurons are tuned to oriented edges at specific locations in the visual field and
arranged in a map of visual space such that adjacent points on the cortical surface respond to stimuli
at adjacent points in the visual field. As signals progress through the hierarchy of retinotopically
organized visual regions (i.e., V2, V3, V4), individual neurons become sensitive to increasingly
complex patterns and integrate over larger areas of the visual field (Gallant et al. 1993, Nandy
et al. 2013, Pasupathy et al. 2020).

Computational models of human visual cortex derived from functional magnetic resonance
imaging (fMRI) have elucidated similar organizational principles as those derived from single-unit
physiology. For example, the population receptive field (pRF) model describes the blood oxygen
level-dependent (BOLD) signal at the spatial scale of fMRI measurements (voxels approximately
0.5 to 3 mm on each side, containing tens to hundreds of thousands of neurons) as the summation
of signals over a portion of the visual field (Dumoulin & Wandell 2008). A voxel’s pRF is generally
defined in terms of its center location (x and y coordinates) and size (o) (Dumoulin & Wandell
2008, Wandell & Winawer 2015). The average pRF size increases from V1 to hV4, as does the
complexity of the model required to predict responses (Kay et al. 2013a,b).
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Since the advent of fMRI in the early 1990s, dozens of retinotopic maps have been delineated
in the human brain (Wandell & Winawer 2010), tessellating most of the occipital lobe and large
swaths of the temporal (Amano et al. 2009, Huk et al. 2002), parietal (Silver et al. 2005), and even
frontal lobes (Mackey et al. 2017, Silver & Kastner 2009). Each retinotopic region has a map of the
contralateral visual hemifield (Arcaro et al. 2009, Brewer et al. 2005, Wandell et al. 2007, Winawer
etal. 2010).

Paralleling the decrease in perceptual resolution in peripheral vision, the amount of cortical
surface area devoted to each point in visual space decreases as eccentricity increases, and pRF sizes
grow larger (Harvey & Dumoulin 2011). Thus, a word presented 3° to the right of fixation will
produce activation at the corresponding locations of each retinotopic map in the left hemisphere
(Figure 2¢). A word at 6° will activate smaller patches nearby on the cortical surface. The notion
that stimuli in the periphery are represented by fewer neurons with larger, more overlapping re-
ceptive fields may help explain why behavioral measurements of acuity (Duncan & Boynton 2003,
Song etal. 2015) and crowding (He etal. 2019, Levi et al. 1985, Pelli 2008) differ across the visual
field. Much of that variation in perceptual and cortical resolution is inherited from the distribution
of retinal ganglion cells (Kwon & Liu 2019) but also differs among retinotopic regions (Harvey
& Dumoulin 2011).

Therefore, we can draw some tentative links between properties of visual cortex and the reading
behavior reviewed in the previous section. The retinotopic organization of early visual cortex
allows for multiple letters to be processed in parallel, at least initially, by different populations
of neurons within each retinotopic map. The size of the visual span and the difficulty of word
recognition outside of the fovea could be explained in large part by the general properties of
neuronal encoding across the visual field (e.g., larger receptive fields and more spatial integration
in the periphery). Alternatively, these behavioral phenomena may relate to the fact that word-
selective cortex only receives signals from a relatively small portion of the central visual field, much
less than do V1 and other retinotopic regions (Le et al. 2017). Other stimulus-specific factors yet
to be explained by properties of retinotopic cortex include the right hemifield advantage for text,
the serial bottleneck for word recognition, and controversial claims that crowding mechanisms
differ for letters (Castet et al. 2017, Grainger et al. 2010).

3.2. A Hierarchy of Processing Stages: From Features to Letters to Words

Letters are configurations of oriented and curved line segments. Most models of reading begin
with the supposition that visual cortex first encodes those elementary visual features that, in
combination, define individual letters (Balota et al. 2006, Dehaene et al. 2005, Grainger et al.
2008). Time-resolved measurements made with electroencephalography (EEG), magnetoen-
cephalography (MEG), and electrocorticography (ECoG) demonstrate a temporal sequence
beginning with sensitivity to basic visual features between 80 ms and 100 ms after stimu-
lus onset (Marinkovic et al. 2003), progressing to sensitivity to letters between 120 ms and
160 ms (Thesen et al. 2012), and sensitivity to letter combinations and words at approximately
200 ms and later (Hirshorn et al. 2016). Spatially resolved measurements made with fMRI have
revealed a sequence of regions in VOTC that selectively respond to letters and words (Cohen et al.
2000, 2002; Lerma-Usabiaga et al. 2018; Strother et al. 2015; Yeatman et al. 2013). Neurological
studies have confirmed that this area of cortex, termed the VWFA for its specialized role in
reading, is critical for rapid and automatic word recognition (Gaillard et al. 2006, Hirshorn et al.
2016, Pflugshaupt et al. 2009). Separate from the VWFA, posterior regions are selective for
letters but without a preference for the letter combinations that constitute words (James et al.
2005, Strother et al. 2015, Vinckier et al. 2007, Wong et al. 2009).

Yeatman o White



Annu. Rev. Vis. Sci. 2021.7:487-517. Downloaded from www.annualreviews.org
Access provided by Columbia University on 09/17/21. For personal use only.

3.3. Category Selectivity in Ventral Temporal Cortex

The VWEFA lies in the OTS, surrounded by other visual regions that serve important functions
for object recognition at a high level of the ventral visual stream (Felleman & Van Essen 1991).
Up until very recently, the organization of high-level visual cortex was frequently described as
inconsistent or bewildering (Weiner & Grill-Spector 2012). Neurons in the macaque inferior
temporal (IT) cortex that selectively respond to faces, hands, and common objects were first dis-
covered in the late 1960s (Gross et al. 1969, 1972). At the time, the existence of face cells seemed
so improbable that other labs did not seek to replicate this observation for over a decade [in fact,
Charlie Gross waited to publish the discovery for years (Squire 2009)]. Much later, human fMRI
studies elucidated the elegant correspondence between anatomy and function in VOTC (Weiner
& Grill-Spector 2012).

In 1997, Kanwisher and colleagues (Kanwisher 2010, Kanwisher et al. 1997) demonstrated
that a face-selective region of the human fusiform gyrus could be localized in most individuals by
contrasting the fMRI response to images of faces versus the response to images of various com-
mon objects (a localizer experiment). They called this region the face area, later referred to as the
fusiform face area (FFA), and proposed that innately specified modules are devoted to the com-
putations required for processing special stimulus classes such as faces. The existence of a face
area was controversial, but later studies combining fMRI localizers with single-unit physiology
in macaques confirmed that a vast majority of neurons in face areas are selective for faces (Tsao
et al. 2006). Furthermore, combining fMRI localizers with cortical stimulation in human surgical
patients confirmed that perturbing face-selective cortex selectively disrupts perception of faces
(Parvizi et al. 2012). In the years immediately following the discovery of the FFA, adjacent re-
gions with selectivity for places and scenes (Epstein & Kanwisher 1998), bodies (Downing et al.
2001), and words (i.e., the VWFA) (Cohen et al. 2000) were described and named. The VWFA
is, of course, the most important of these areas for reading, and in the intervening 20 years, we
have learned much more about its role in word recognition by combining fMRI, EEG, MEG,
psychophysics, and direct intracranial recordings.

3.4. Inside the Visual Word Form Area: A Hierarchy of Subregions

By the early 2000s, it was clear that category selectivity is a fundamental organizing principle
of high-level visual cortex, but it took another decade to work out a detailed model of the
functional architecture. By collecting high-resolution fMRI data and visualizing face- and
body-selective responses on the cortical surface of individual subjects, Weiner & Grill-Spector
(2010) found that each category was represented in multiple, interdigitated patches, rather
than in a single region. When visualized on anatomical slices in the brain volume, the lay-
out of these repeating regions appeared haphazard. However, when visualized on the cortical
surface, each subregion was consistently localized to the same anatomical landmark in each
subject. For example, the FFA is actually composed of two distinct subregions, one of which
is located in the posterior fusiform (termed FFA-1 or pFus-faces) and the second (FFA-2 or
mFus-faces) in the anterior tip of the midfusiform sulcus (Figure 4). A body-selective region
lies between these two face-selective regions (Weiner & Grill-Spector 2011). White and col-
leagues (2019¢) demonstrated that the classic VWFA, like other areas, is also composed of
distinct patches. VWFA-1 (or pFus-Words; Lerma-Usabiaga et al. 2018), located in the posterior
OTS, is immediately lateral to the posterior face- and limb-selective regions (Grill-Spector &
Weiner 2014). VWFA-2 is more anterior in the OTS (but also spread across the fusiform gyrus
and inferior temporal gyrus), and its location is lateral and anterior to FFA-2.
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Figure 4

White matter pathways for reading. () VWFA-1 and VWFA-2 have different patterns of white matter connectivity. Activation peaks
for words versus checkerboards in the posterior OT'S (VWFA-1) and words versus pseudowords in the mid OTS (VWFA-2)

are taken from Lerma-Usabiaga et al. (2018). The VOF (green) connects VWFA-1 to dorsal stream regions in the parietal lobe that

are involved in visual attention (e.g., IPS 0/1 maps) (Takemura et al. 2016, Yeatman et al. 2014). The arcuate fasciculus (b/ze) connects
VWFA-2 to language regions in lateral frontal cortex (e.g., Broca’s area). The posterior segment of the arcuate (purple) connects VWFA-2
to regions in the superior temporal and inferior parietal lobe that are involved in the perception of speech sounds (Weiner et al. 2017b).
() Eccentricity preferences based on the HCP group average retinotopy data set (Benson et al. 2018). The color map is thresholded to
show regions where the pRF model R? > 10%. An eccentricity gradient extends from the OTS, where pRFs are mostly centered within
the central 1° (red), to the collateral sulcus, where pRFs are mostly centered >6° from fovea (green-blue). (c) Maximum probability maps
of word-selective (VWFA), face-selective (FFA), and place-selective (PPA) regions (Grill-Spector & Weiner 2014, Weiner et al. 2018).
The typical location of limb- and body-selective responses (also known as the fusiform body area; Peelen & Downing 2005) is between
the face and word regions (Weiner & Grill-Spector 2011, Weiner et al. 2017a). (d) The distribution of pRF center eccentricities

for V1 (which is relatively flat across the visual field), PPA (which has a bias towards the periphery), FFA-1 (which peaks around

2°), and VWFA-1 (which is heavily biased for the central 0.5°). Abbreviations: FFA, fusiform face area; HCP, Human Connectome
Project; IPS, intra-parietal sulcus; mOTS, middle OTS; OTS, occipitotemporal sulcus; pOTS, posterior OTS; PPA, parahippocampal
place area; pRE, population receptive field; V1, primary visual cortex; VOEF, vertical occipital fasciculus; VWFA, visual word form area.

The notion of a processing hierarchy has long been a core principle in visual neuroscience
(Felleman & Van Essen 1991) and computational models of vision (Riesenhuber & Poggio 1999).
However, the order of operations across space and time is complex, with parallel and recurrent
activity in multiple systems (Zeki 2016). The observation of multiple patches devoted to each
stimulus category and arranged along the posterior—anterior axis of VOTC suggests the potential
of hierarchical computations within each category or, at least, the division of computations into
anatomically distinct regions that interact to derive meaning from a visual stimulus (Bao et al.
2020).

A recent ECoG study supports the notion of separable VOTC subregions involved in word
recognition but challenges a strict hierarchical model that assumes a temporal order of activa-
tion from posterior to anterior regions. Direct neural recordings showed increasing selectivity for
orthographic and lexical properties of words along the posterior-anterior axis, but selectivity for
words over nonwords appeared in a relatively anterior midfusiform region before spreading to
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more posterior regions (Woolnough et al 2021). It remains to be seen whether these subregions
correspond exactly to the VWFA-1 and VWFA-2 described with fMRL

Examinations of the white matter connections of VOTC also lend support to the hypoth-
esis that VWFA subregions are anatomically distinct and fulfill distinct roles in the word-
recognition process. The more posterior VWFA-1, which appears to encode visual properties
of text (Kay & Yeatman 2017, Lerma-Usabiaga et al. 2018) and is modulated by spatial attention
(White et al. 2019c), is located within the ventral terminations of the inferior longitudinal
fasciculus (ILF) and vertical occipital fasciculus (VOF) (Kay & Yeatman 2017, Lerma-Usabiaga
et al. 2018, Yeatman et al. 2013) (Figure 44). The ILF carries signals from early visual cortex
up the ventral stream. The VOF connects VOTC to V3A/B and intraparietal sulcus (IPS) 0/1
maps that are involved in control of spatial attention (Silver & Kastner 2009, Silver et al. 2005,
Takemura et al. 2016, Yeatman et al. 2014). VWFA-2 is anterior to the VOF and is mostly within
the ventral terminations of the arcuate fasciculus (Lerma-Usabiaga et al. 2018, Weiner et al.
2017b, Yeatman et al. 2014), although it also receives projections from the ILF (Grotheer et al.
2020). The arcuate fasciculus connects to Broca’s area in lateral frontal cortex and has played
a central role in theories of language for over a century (Catani & Mesulam 2008, Wernicke
1881). Thus, VWFA-2 is uniquely positioned to function as an intermediary between vision and
language. In line with this perspective, VWFA-2 is uniquely sensitive to linguistic properties of
text (Lerma-Usabiaga et al. 2018, White et al. 2019c¢).

4. THE REPRESENTATION OF VISUAL SPACE
IN WORD-SELECTIVE CORTEX

4.1. Eccentricity Biases

Retinotopic maps have not been discovered in the OT'S or fusiform gyrus, where patches of cortex
are selective for words, faces, and other image categories (but see Kolster et al. 2010). Near these
patches of cortex are retinotopic maps with very small foveal representations in scene-selective
regions of the collateral sulcus and parahippocampal cortex (PHC-1 and PHC-2) (Arcaro et al.
2009, Lescroart & Gallant 2019).

The VWFA is not clearly retinotopic, but its lack of a topographic map of the visual field
does not imply that its neurons do not have spatially tuned receptive fields. For example, Malach
and colleagues (Hasson et al. 2002, Levy et al. 2001, Malach et al. 2002) discovered that lateral
VOTC has a bias for foveal signals (within the central 1.5°), whereas medial VOTC has a bias
for peripheral signals (greater than 6°). Thus, even though there is no topographic map of polar
angle, there is a gradient of eccentricity preferences that spans centimeters of VOTC (Figure 45).
This finding implies that every VOTC region will have an eccentricity preference, which may
determine its category preference. Under this hypothesis (Hasson et al. 2002), the VWFA is in
the OTS, at the lateral boundary of VOTC, because that region has the strongest preference for
foveal signals (Figure 4b,c,d).

This observation has stood the test of time. Face-selective regions are immediately medial to
the VWFA (Figure 4b,c) and have a field of view that extends 2-3° further into the periphery than
that of the VWFA (Kay etal. 2015, Malach etal. 2002, Silson et al. 2015) (Figure 3d). Face percep-
tion depends on foveal signals but also involves integration of information over a larger portion
of the visual field; while a word typically spans 1-2° of visual angle, a face typically spans 4-8° in
natural viewing (Grill-Spector et al. 2017). Some evidence even suggests that, as children become
highly skilled readers, words compete with faces for the most foveal representations in VOTC
(Gomez et al. 2018). Scene-selective regions are located in the collateral sulcus, the medial bound-
ary of VOTC (Epstein & Kanwisher 1998, Epstein et al. 1999, Nasr et al. 2011). Scene-selective
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regions, in principle, must integrate information over large parts of the visual field, and indeed,
they have the strongest bias toward information in the periphery (greater than 6° eccentricity)
(Arcaro et al. 2009).

4.2. Spatial Invariance Versus Spatial Tuning

In this section, we discuss the question of the representation of visual space within word-selective
cortex. Early reports concluded that the VWFA was invariant to spatial position because words
presented in both the left and right hemifield evoked a strong response in the left-hemisphere
OTS (Cohen et al. 2002). This was a surprising observation given how strictly selective other
visual areas are for the contralateral visual field and, more generally, the ubiquity of retinotopy
throughout visual cortex. Rauschecker and colleagues (2012) challenged the position invariance
of the VWFA by presenting words at six locations along the horizontal and vertical meridians.
They then trained a support vector machine to classify the stimulus location based on the pattern
of responses evoked across all of the voxels in each visual region. Using the pattern of responses
in the VWFA, they correctly classified the location of the word approximately 75% of the time.
Although accuracy was higher in early visual cortex (>90% correct), these data clearly demonstrate
that VWFA voxels systematically vary in terms of their sensitivity to words at specific locations
in the visual field. Follow-up work demonstrated that the pRF model was a good fit to data from
individual VWFA voxels and that, even though most voxels had pRF centers near fovea, there was
substantial variability in pRF center and size across VWFA voxels (Le et al. 2017).

The discovery of position sensitivity within the VWFA demanded a revision to the prevailing
hypothesis that the representation of word forms is invariant to position (Goebel 2012, Hannagan
& Grainger 2013). What role does this spatial information play in the word-recognition process?
One possibility is that information about retinal position is inherited from early visual cortex but
does not play an essential role in VWFA computations (Hannagan & Grainger 2013). Alterna-
tively, the VWFA might have more similarities to other visual areas than is commonly presumed;
neurons within the VWFA might have receptive fields that only encode word forms at particular
locations in the visual field (Goebel 2012, Rauschecker et al. 2012).

One way to test the functional significance of position information is through a manipula-
tion of spatial attention. In early retinotopic areas, attending to a particular location in the visual
field amplifies the response of neurons with receptive fields centered on the attended location
(Brefczynski & DeYoe 1999, Gandhi et al. 1999, Pestilli et al. 2011, Silver et al. 2005).

White and colleagues (2019¢) measured the effects of spatial attention in word-selective VOTC
regions by adapting a classic spatial cueing paradigm to a word-recognition task. To determine
each voxel’s spatial tuning, they first presented single words 3° to the left or right of fixation.
Consistent with the findings of Rauschecker and colleagues (2012), word-selective regions in both
hemispheres responded to words on both sides of fixation, but with a clear preference for the
contralateral visual field (Figure 2c). Moreover, in the posterior VWFA subregion (VWFA-1),
voxels varied in their spatial preferences.

White and colleagues (2019¢) then capitalized on each word-selective voxel’s spatial tuning
in an experiment manipulating spatial attention (using the behavioral paradigm reviewed above;
see Figure 1d). Two words were presented simultaneously on each trial, one to the left and one
to the right of fixation, and the subject was pre-cued to attend to the left side, the right side, or
both. Voxels tuned to the left visual field responded more strongly when subjects attended to the
left word, and voxels tuned to the right responded more strongly when subjects attended to the
right word. In this respect, VWFA-1 voxels behave in a similar manner to retinotopic regions:
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Each voxel has a preference for a particular location and is amplified when attention is allocated
to that location. However, this experiment also found a striking and possibly unique feature of
left-hemisphere VWFA-1. A spatial encoding model based on individual voxel activity suggested
that the population of neurons in left VWFA-1 composes (at least) two spatial channels, one
for words in the left visual field and one for words in the right. These two channels can be
independently modulated by selective attention.

The notion of separable spatial channels in the posterior word-selective region also relates to
the processing of a single word that is fixated centrally. The two halves of the word are initially
processed in contralateral hemispheres of early visual cortex. Repetition suppression experiments
have shown that a posterior word-selective region represents both halves separately, while an
anterior region (lateralized to the left hemisphere) integrates information from both hemifields
into a unified representation of a whole word (Strother et al. 2015, 2017). In this regard, these
word-selective regions are quite unlike earlier retinotopic regions, where the visual hemifields
are more strictly segregated into separate hemispheres.

4.3. From Parallel Processing of Visual Features to Serial Processing
of Linguistic Features

White and colleagues (2019b,c) made another observation that offers a resolution to the con-
troversy over whether the VWFA is invariant (Cohen et al. 2002) or sensitive (Le et al. 2017,
Rauschecker et al. 2012) to the position of words in the visual field. The key was to analyze sepa-
rate subregions of the VWFA. Much of the classic work on the VWEFA relied on group averages,
spatial smoothing, and visualizations within the volumetric coordinate space defined by a standard
brain template. This group-average approach lacks anatomical precision, particularly in the case
of regions that vary in size and position among subjects (Glezer & Riesenhuber 2013). Moreover,
group averages mix the data across the boundaries of regions that are discernable in the brains
of each individual (Wandell et al. 2012). In contrast, White and colleagues defined VWFA-1 and
VWFA-2 in the brains of individual subjects. Only VWFA-1 (posterior OT'S) showed clear spatial
tuning that varied across voxels and supported the hypothesis of two spatial channels that could
be modulated by selective attention. In VWFA-2, the pattern of activity was better fit by a model
that assumes signals are integrated across the two hemifields into a single channel that processes
only one attended word at a time.

Thus, Rauschecker et al. (2012) and White et al. (2019¢) found unambiguous support for vari-
ation in spatial tuning across word-selective voxels in the posterior OTS of individual subjects
(VWFA-1). In contrast, other studies that concluded that the VWFA is location invariant used
group averages and data visualized within the brain volume. They were likely analyzing or mixing
signals from the more anterior subregion (i.e., VWFA-2), where there is less position informa-
tion. Future research must build on the fact that the classic VWFA is composed of (at least) two
separable subregions, possibly organized in a hierarchy.

Given that (#) VWFA-1 has multiple spatial channels that encode words across the visual field,
(/) VWFA-2 only has a single spatial channel, and (¢) behavioral measures indicate that you can
only recognize one word at a time, one might ask what occurs when a subject is cued to attend
to two words simultaneously. Retinotopic areas encode multiple stimuli at different locations in
parallel, and, when an individual is cued to attend to multiple locations in the visual field, attention
amplifies the response at all of the attended locations, compared to when each location is ignored
(Chen & Seidemann 2012, White et al. 2017; but see Pestilli et al. 2011). The same is true in
VWEFA-1: Attending to two words amplifies the response in voxels that are tuned to each location
(White etal. 2019¢c). VWFA-2 is unaffected by the distribution of spatial attention (focus left, focus
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right, or divide) in this context. The working model based on these data is that parallel signals from
VWFA-1 converge into a bottleneck in VWFA-2, which only processes a single word at a time
(White et al. 2019b). This model offers an explanation of the behavioral observation of a serial
bottleneck in word recognition (White et al. 2020) and, more generally, an answer to the question
of how lines of text are transformed into sequences of meaningful words.

5. WHAT DETERMINES THE LOCATION OF THE VISUAL WORD
FORM AREA?

Next, we might ask why the VWFA is in this exact location. What is special about the left OTS
for processing words? Given that words are a new cultural invention, and not an evolutionarily
relevant category of visual stimuli, it is surprising that the VWFA always develops in the same
anatomical location across languages, cultures, and writing systems.

There are two related but distinct hypotheses to explain the emergence of the VWFA in the
OTS. The neuronal recycling hypothesis, proposed by Dehaene & Cohen (2007), posits that new
cultural inventions find their neuronal niche in circuits that evolved for closely related functions.
Specifically, as children learn to read, word recognition competes with face recognition for cor-
tical territory. As literacy training reorganizes a patch of left VOTC to selectively process words,
face-selective responses become increasingly right lateralized (Behrmann & Plaut 2020, Dehaene
etal. 2011). Why are responses to words in VOT'C typically left lateralized? Interestingly, there is
a correlation between the lateralization of written word responses in VOT'C and the lateralization
of higher-level language processing (Broca’s area) (Cai et al. 2010, Gerrits et al. 2019, Haegen
et al. 2012). Individuals with right-lateralized language regions have stronger responses to writ-
ten words in right VOTC. Therefore, in line with the neuronal recycling hypothesis, the VWFA
may develop in regions with the capacity to process complex objects at the fovea and with di-
rect connections to language centers, although the lateralized hemispheric dominance is not total
(Behrmann & Plaut 2020).

A related but distinct hypothesis explains the topography of VOTC as an object space
whereby different dimensions of object perception might specify the optimal location for dif-
ferent category-selective regions. Broadly encapsulated by the object space hypothesis, a variety
of dimensions have been proposed, including fovea versus periphery (Hasson et al. 2002, Malach
et al. 2002), animate versus inanimate, small versus large real world size (Konkle & Oliva 2012),
high versus low spatial frequency, and various shape characteristics (Op de Beeck et al. 2019).

Regarding the neuronal recycling hypothesis, some recent studies have called into question the
supposition that words compete with faces for cortical territory (see Hervais-Adelman et al. 2019,
Huettig et al. 2018). Two studies that followed children longitudinally from preschool reported
that word selectivity emerges from a region that is otherwise not selective for any specific category
(Dehaene-Lambertz et al. 2018, Saygin et al. 2016). Moreover, a cross-sectional study of elemen-
tary school children suggested that word-selective cortex emerges within a region that would
otherwise process a variety of different types of objects (Kubota et al. 2019) (Figure 3a-c).
Thus, although it is clear that literacy changes the organization of VOTGC, it is still debatable
whether literacy competes with any one specific category for space in VOT'C (but see Nordt et al.
2020). In fact, in comparisons of literate adults and illiterate adults, literacy is associated with
larger-amplitude responses to other categories of visual stimuli beyond words (Hervais-Adelman
etal. 2019).

Regarding the object space hypothesis, Bao and colleagues (2020) collected fMRI data and
single-unit recordings in VOTC while rhesus macaques viewed 1,224 images of objects. They
were able to explain the pattern of neuronal responses by placing each object in a two-dimensional
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space: Along one dimension, objects ranged between spiky and stubby, and along the other, they
ranged from animate to inanimate. Even in patches of VOTC not clearly selective for categories
like faces, bodies, or scenes, neurons seemed to be sorting objects according to these two
dimensions.

Based on rough homologies between macaques and humans, the object space model from Bao
et al. (2020) predicts that the VWFA emerges in a portion of VOTC that is tuned for inanimate,
stubby objects. Correspondingly, the FFA arises where there is tuning for round or stubby animate
objects. This principle is in line with new discoveries of protomaps that are present at birth and
predict the future locations of category-selective regions (Arcaro & Livingstone 2017, Arcaro
etal. 2019, Livingstone et al. 2017). In fact, when young macaques are trained to recognize letters,
they develop a letter-selective region in a cortical location that is selective for foveal signals from
birth and roughly homologous to the VWFA in humans (Srihasam et al. 2014).

The concept of an object space (or protomap) provides an appealing and parsimonious descrip-
tion of VOTC, but there are certainly other important factors, such as the pattern of structural
connections with language cortex, that also constrain the location of the VWFA. For example,
in congenitally blind individuals, the OTS still develops a selectivity for written language in the
form of braille (Bedny 2017, Kim et al. 2017, Reich et al. 2011). Moreover, the location of major
white matter tracts measured in preschool children predicts where the future VWFA will emerge
as these children learn to read (Saygin et al. 2016).

Thus, the location in visual cortex that is reorganized to support literacy is likely determined
by several constraints, including (#) preferences for foveal signals, (b) predisposition for certain
visual features, and (c) the presence of long-range white matter connections to requisite visual and
language regions.

6. WHAT IS COMPUTED IN WORD-SELECTIVE CORTEX AND HOW
DOES IT SUPPORT WORD RECOGNITION?

Central to the question in the title of this section is the century-old debate over the existence of
a specialized visual representation of written language that holds knowledge about letters, their
combinatorial statistics, and the identity of words (Bub et al. 1993, Wernicke 1906). Contrary
to the hypothesis that word-selective cortex encodes specific properties of text that mediate
word recognition, Wernicke (1906) and more recent critics (Price & Devlin 2003, 2011) have
argued that the visual system only encodes generic properties of visual form. A recent ECoG
study tackled this question by identifying word-selective electrodes located on the left mid-
fusiform gyrus and then stimulating these electrodes while subjects named letters, words, faces,
and various pictures. This study found that electrical stimulation applied to word-selective cortex
specifically interfered with naming letters and words but had no effect on naming faces and other
pictures (Hirshorn et al. 2016). Moreover, after surgical resection, patients displayed selective
deficits for naming words (Figure 3d). Analyzing the response of word-selective electrodes
revealed sensitivity to statistical regularities of letter combinations such that a pattern classifier
could detect whether text had common versus uncommon letter combinations within 200 ms of
stimulus onset. In a later time window, a pattern classifier was sensitive to individual word identity
(Hirshorn et al. 2016).

These direct neural recordings agree with a growing body of fMRI studies suggesting that the
VWEFA (likely VWFA-2) encodes word identity (Glezer et al. 2009, 2015; Riesenhuber & Glezer
2017). Taken together, these studies suggest that learning new written words creates lexical entries
that are stored in the VWFA and can be differentiated from letter strings that differ by even a
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single letter (Glezer et al. 2009, Riesenhuber & Glezer 2017). The VWFA is therefore sensitive
to the frequency statistics of letter combinations that we encounter during reading, as well as to
the identity of words.

7. WHY DO SOME CHILDREN STRUGGLE TO LEARN TO READ?

Reading is a complex behavior that depends on coordinated activity across a collection of brain
systems. Thus, one might hypothesize that a deficit in any component of the reading circuitry, or
in the white matter connections that carry signals between disparate regions, would interfere with
the process of learning to read. However, many of the prominent theories of reading disability,
also known as developmental dyslexia, posit a single underlying mechanism that explains why so
many children struggle to read (Goswami 2015).

The predominant view is that dyslexia is a language-based learning disability, specifically
caused by deficits in phonological processing (Snowling 1998, Vellutino et al. 2004, Wagner &
Torgesen 1987). Phonological processing refers to encoding, accessing, and manipulating the
sounds of spoken language—a core set of skills that are undoubtedly important for learning to
read (Boets et al. 2013, Wagner & Torgesen 1987). However, this view is not without controversy.
Other research groups assert that deficits in visual-spatial attention (Franceschini et al. 2012,
Vidyasagar & Pammer 2010) and/or the magnocellular visual pathway (Eden et al. 1996, Stein
2001) are the core deficits in dyslexia. The magnocellular theory of dyslexia emerged in the
1980s from observations that people with dyslexia perform poorly on psychophysical tasks that
tap magnocellular function (Lovegrove et al. 1980), such as visual motion discrimination (Demb
et al. 1998). Moreover, postmortem dissections revealed differences in the size and morphology
of neurons in the magnocellular layers of the lateral geniculate nucleus in a few individuals with
dyslexia (Livingstone et al. 1991).

Although debates over competing core deficit models of dyslexia persist, many researchers
are moving to accept the multifactorial nature of dyslexia (O’Brien & Yeatman 2021, Pennington
2006). Like other developmental disorders (e.g., autism spectrum disorders), dyslexia is unlikely to
have a single cause common to all children. Instead, dyslexia should be conceptualized as the out-
come of a combination of different risk factors. Under this model, poor phonological processing
(Wolf & Bowers 1999), general issues with spoken language (Catts et al. 2017), difficulties con-
trolling spatial attention (White et al. 2019a), elevated visual crowding (Joo et al. 2018, Martelli
et al. 2009), and deficiencies at various stages of visual processing (Joo et al. 2017, Talcott et al.
2002) all confer risk for reading difficulties. Under this multifactorial framework, dyslexia is the
probabilistic outcome of a collection of deficits of varying severity (Catts et al. 2017, O’Brien &
Yeatman 2021, Pennington et al. 2012).

Regarding the underlying physiology, many of the components of the reading circuity reviewed
in this article are implicated in dyslexia. In fMRI studies, left VOTC (including the VWFA) is the
most commonly reported location of anomalous activity in people with dyslexia (Richlan et al.
2011, Wandell et al. 2012). In children with dyslexia, it is often impossible to identify the VWFA,
likely due to the lack of a word-selective response (Kubota et al. 2019) (Figure 3a—c). Moreover,
the developmental trajectories of the arcuate fasciculus and ILF differ in children with dyslexia,
and this difference persists into adulthood (Boets et al. 2013, Wandell & Yeatman 2013, Yeatman
et al. 2012). Recent data even suggest that VOTC, and the associated white matter connections,
are different in preschool children prior to formal reading instruction (Centanni et al. 2019,
Langer et al. 2015, Vandermosten et al. 2015). Fortunately, many of these differences in brain
structure (Huber et al. 2018) and function (Barquero et al. 2014) show high levels of plasticity
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when children receive intensive, evidence-based intervention programs. Understanding how
development of the visual system relates to development of the rest of the reading circuitry will,
we hope, pave the way for new, personalized interventions for those who struggle to learn to read.

8. CONCLUSION

As you read this review, your brain performed an incredible feat: It transformed a complex
sequence of visual symbols into a narrative at 200-300 words per minute. You made thousands
of rapid eye movements and shifts of attention to process the text in small chunks. That was
only possible because, early in your life, education sculpted specialized circuits that lie at the
intersection of vision and language. In that respect, reading is unique compared to other visual
functions: Literacy requires systematic instruction and practice over a protracted period of
development. However, much of the circuitry for reading is shared across a myriad of other visual
functions and inherits both the capacities and constraints that are present at many stages of the
visual system. Therefore, a nuanced understanding of reading is by definition an interdisciplinary
endeavor, drawing on research spanning vision science, psychology, neuroscience, linguistics,
and education. In this review, we cover the rich history of the scientific study of reading to
provide context for the most recent discoveries linking the structure and function of the brain’s
reading circuitry to the behavior that it supports. With the compendium of methods that are
now available to psychologists and neuroscientists, the field is poised to answer many of the
outstanding questions that have intrigued reading researchers since the nineteenth century.

1. Why is reading in the peripheral visual field so slow and difficult? If the problem were
entirely due to generic visual constraints, increasing letter size and spacing should equate
peripheral and foveal reading, but it does not.

2. How many distinct word-selective regions exist in high-level visual cortex, and what are
their functions?

3. Should the subcomponents of the VWFA be conceptualized as distinct regions orga-
nized in a hierarchy or as a gradient with gradual changes in function across the cortical
surface?

4. To what extent do processing constraints in the visual system contribute to reading dif-
ficulties in people with dyslexia, and what are the implications for intervention?
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