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ABSTRACT 

The visual system can encode many stimuli simultaneously, but there are limits to how 

well multiple objects can be identified in parallel. At the extreme, some objects might 

have to be identified serially. The redundant target paradigm is one tool for 

distinguishing specific parallel and serial models. It compares responses to displays 

containing one target versus displays containing two targets. The typical result is a 

positive redundant target effect: faster correct responses to two targets, as predicted by 

many parallel models. Here we generalize three standard models to account for response 

accuracy as well as speed. Surprisingly, two models predict a reversal of the redundant 

target effect (slower responses to two targets than to one target): the generalized standard 

serial model, and a specific form of a fixed-capacity parallel model. To test that prediction, 

we measured performance for three different judgments of written words: color 

detection, lexical decision, and semantic categorization. The color task yielded positive 

redundant target effects, which reject the standard serial model. The semantic task 

yielded consistently negative effects, which are consistent with either the standard serial 

model or some limited-capacity parallel models. Thus, redundant targets can have 

negative effects, and they demonstrate limits that impair simultaneous recognition of two 

words. 

 

Key words: redundant targets; divided attention; serial and parallel processing; response 
time; visual word recognition.  

 

PUBLIC SIGNIFICANCE STATEMENT 

The visual environment often contains many relevant objects, from faces in a crowd to 
words on a page. Here we improve an experimental test of whether you can process 
more than one such stimulus at a time. The results reveal limits to how well you can 
recognize two written words simultaneously.   
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The study of perception has long been animated by the question of how we process 

multiple stimuli when they are presented simultaneously. This question is particularly 

important for situations that involve visual search (e.g., locating a friend in a crowd) and 

for complex tasks such as reading, when many relevant stimuli (e.g., words) are 

presented simultaneously. Depending on several sensory and cognitive factors, an 

observer might be able to recognize multiple stimuli simultaneously, each just as well as 

a single stimulus viewed alone, or they might be hindered by a processing capacity limit. 

There are gradations of limited-capacity parallel processing, due to finite cognitive 

resources being shared between stimuli that might compete or interfere with each other. 

At the extreme, multiple stimuli might be processed serially, one at a time.  

One of the most straightforward tools for evaluating parallel processing capacity 

is the redundant target paradigm(van der Heijden et al., 1983). In this paper, we revisit 

the redundant target paradigm and develop generalizations of standard models that 

predict both response times and errors. The first two models are the most common from 

prior work on redundant targets: a standard unlimited-capacity parallel model and a 

standard serial model. We also develop two variants of a fixed-capacity parallel model, 

which we also generalized to include accuracy. They make many of the same 

assumptions as the other two models (as explained in more detail below), but they 

introduce a cost of processing two stimuli in parallel. They can make different predictions 

depending on the nature of the evidence accumulation process.   

We then test these predictions with four experiments that use written words as the 

target stimuli. These experiments assess how well two English words can be recognized 

simultaneously. The experiments presented here differ from natural reading, but they 

characterize the fundamental capacity limits that readers cope with. The redundant target 

paradigm complements other approaches that measure dual-task performance or spatial 
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attention effects to investigate how well readers can recognize two words at exactly the 

same time (Johnson et al., 2022; White et al., 2018, 2020; White, Palmer, et al., 2019). 

Fundamentals of redundant target effects 

The redundant target paradigm grew out of a larger visual search literature to 

investigate whether observers can process multiple stimuli presented simultaneously at 

different visual field positions (van der Heijden, 1975). The observer’s task is to view a 

display and report the presence or absence of stimuli that belong to a target category. 

Non-target stimuli are termed “distractors.” On some trials, one target is presented alone 

or with one or more distractors. On other trials, multiple targets are presented 

simultaneously – that is, the display contains redundant targets. The typical finding is a 

positive redundant target effect: a speeding of correct response times for multiple targets 

compared a single target. Such a “redundancy gain” is often taken as evidence that the 

targets were identified in parallel.  

Studies that have used the redundant target paradigm can be divided into two 

broad categories. Studies in the first category seek to distinguish between a parallel 

model and a serial model (van der Heijden, 1975). They compare response times between 

displays that consist of two (or more) targets, versus displays that contain one target and 

no other stimuli. Positive redundant target effects have often been used to reject the serial 

model in favor of the parallel model. (Exceptions in the literature are reviewed below).  

Studies in the second category seek to distinguish between two flavors of parallel models: 

those with separate activations caused by each stimulus, versus those with 

“coactivations” (Eriksen et al., 1989; Miller, 1982; Mordkoff & Yantis, 1991). To do so, 

response times are compared between displays that contain two targets and displays that 

contain one target and one distractor. These “mixed” trials are not useful for testing the 

serial model, because on a random half of trials, the serial process would start with the 

distractor before identifying the target. This causes slower responses on average for 
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mixed target-distractor trials than two-target trials. That is the same prediction as made 

by parallel models.  

Therefore, we focus on the comparison between displays with a single target 

presented alone and displays with two targets. As shown in Figure 1, contrasting 

predictions for correct response time arise from a standard unlimited-capacity parallel 

model and a standard serial model. They are called “standard” models because of 

assumptions about the independence of the processes for each stimulus. In particular, 

they assume “selective influence” of each stimulus on a processing channel, which means 

that the specific features of one stimulus do not influence the features that are represented 

for another stimulus. Both standard models assume that search is self-terminating: the 

observer responds as soon as they detect a target (Van Zandt & Townsend, 1993). In the 

General Discussion we address how parallel and serial models can mimic each other 

when made more complicated (Algom et al., 2015). In this study, however, we focus on 

relatively simple models with plausible assumptions, which we develop further by 

accounting for errors as well as response times. To make progress we then reject specific 

models that cannot account for performance in word recognition tasks.  

The standard, self-terminating, unlimited-capacity parallel model assumes that 

when two targets are present, they are independently processed in separate channels that 

race to produce the response. The completion time of each process is variable across trials. 

On two-target trials, the response time is determined by the faster of the two processes, 

so the observer is faster on average than when only one target is present (Raab, 1962). 

Thus, the standard, self-terminating parallel model predicts a positive redundant target 

effect: a speeding of correct responses. Note that the term “unlimited-capacity” as applied 

to this standard parallel model does not imply that an unlimited number of stimuli could 

be processed in parallel. Rather, it assumes that in the specific context of the experiment, 

two stimuli are processed independently just as well as a single stimulus is processed, 
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without a capacity limit. It is the common “race” model often discussed for interpreting 

redundant target effects.  

The standard self-terminating serial model, in contrast, assumes that one stimulus 

is identified at a time (Townsend & Nozawa, 1995; van der Heijden, 1975). If two targets are 

presented simultaneously, and the first one to be processed is identified correctly, then 

the mean response time is the same as when only one target is present—the redundant 

target has no effect on performance. Previous descriptions of this serial model stop there; 

but as we explain in our new theory section below, a serial model that incorporates errors 

predicts a slowing of correct response times if the first target to be processed is 

misidentified, and search continues to process the second target correctly.  

 
Figure 1: Diagram of a standard parallel model and a standard serial model for displays 
containing one target (set size 1) or two targets (set size 2). The parallel model predicts faster 
correct responses for set size 2 because the response is triggered by whichever process happens 
to finish sooner. The serial model predicts slower responses to two targets as on some trials one 
target is misidentified as a distractor before the other target is identified.   

Positive redundant target effects have been used to reject the standard self-

terminating serial model for processing simple visual features, such as detecting lights, 

discriminating colors, orientations, and motion directions (Corballis, 2002; Donkin et al., 

2014; Egeth et al., 1989; Ridgway et al., 2008; Schwarz, 2006; Thornton & Gilden, 2001). 
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Redundant target effects have also been found with auditory stimuli (e.g. Schröter et al., 

2007) and with bimodal stimuli (e.g. Gondan et al., 2010; Hershenson, 1962). One study 

reported no significant redundant target effect in a face recognition task (Fitousi, 2021).  

Letters are an interesting case, being the building block of words. Several studies 

have used tasks that require the participant to distinguish one target letter from other 

letters. When the task uses a “go-no/go” procedure—the task is to press a button when a 

target is detected and otherwise make no response—there are positive redundant target 

effects (e.g. Grice & Reed, 1992; Mordkoff & Yantis, 1991; van der Heijden et al., 1983). That 

is also true when the observer makes a vocal choice response (van der Heijden, 1975). 

However, other studies have found no redundant target effect when the procedure is 

slightly different, such as requiring a button-press choice response on each trial (Fournier 

& Eriksen, 1990; Grice & Reed, 1992; van der Heijden et al., 1983). In some of the redundant 

target literature, variation in the task procedure (go-no/go or choice) was confounded 

with the inclusion or exclusion of mixed target-distractor trials. But two studies using 

letters as stimuli do show differences between go/no-go and choice tasks while holding 

the rest of the design constant (Van der Heijden, et al., 1983; Grice and Reed, 1992). Thus, 

for letters, there is reasonable evidence that positive redundant target effects are more 

robust for the go/no-go task procedure. One possible explanation is that letters are 

processed in parallel, producing a positive redundant target effect, but that effect can be 

masked by later decision- or response-selection processes when the response rule is more 

complicated. That is one reason we tested both types of procedures in the present study. 

Redundant target effects for word recognition  

We now turn the case explored in the experiments below: redundant target effects 

for written words. Such effects can reveal the extent to which higher-level semantic or 

linguistic information about two stimuli can be processed in parallel. Of the handful of 

studies that have taken this approach, most – but not all – conclude that two words can 
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be recognized in parallel. These studies have differed in four important respects: whether 

the redundant targets in a single trial are identical words; whether the single-target trials 

also contain a ‘filler’ stimulus; what the task is (semantic categorization vs. lexical 

decision), and how the subject responds (go/no-go vs. choice).  

We first summarize experiments that reported a positive redundant target effect 

for word recognition.  Shepherdson & Miller (2014) used a semantic categorization task. 

Words were presented to the left and/or right of fixation in some experiments and above 

and/or below fixation in others. On each trial, the subject had to make a yes/no response 

to report the presence of a word belonging to a target semantic category (animals). 

Importantly, the “single-target” trials also contained a "filler" stimulus that was a 

pronounceable pseudo-word (neither a target, nor a distractor of the other semantic 

category). The key result was that responses were faster in the redundant target condition 

compared to this modified target-filler baseline.  

Interpreting this experiment is difficult. The critical question is what the standard 

self-terminating serial model predicts in terms of the response time difference between 

these two conditions. It predicts 0 difference only if we make an additional assumption 

about the trials with a single target paired with a pseudoword filler: the target stimulus 

is always processed first and the pseudoword is never processed at all (at least on correct 

trials). That seems unlikely, as the observer would have to first determine which stimulus 

is a real word before beginning to process it. Alternatively, if we assume that the serial 

process sometimes begins with the filler stimulus before moving on to the target word, 

then the serial model predicts slower responses on these target-filler trials than on two-

target trials. The serial model thus predicts the same thing as most parallel models (a 

positive redundant target effect). Thus, we conclude that Shepherdson & Miller (2014) 

did not strictly test the standard self-terminating serial model that we wish to test. Instead 

that study is part of the broader set of experiments that use a mixed-pair baseline to test 

coactivation models.  



 9 

We must go further back in time to find studies that did test the standard serial 

model for word recognition by comparing displays containing two words to display 

containing one word and nothing else. In the four experiments reported by (Mullin & 

Egeth, 1989), words were presented above and/or below fixation, and the participant’s 

instruction was to make a go/no-go response to the presence of any target. Trials 

contained 1 distractor alone, 1 target alone, 2 distractors alone, or 2 targets alone. In two 

experiments with a semantic categorization task, the redundant target effect did not 

significantly differ from 0.  This is unlike the many other experiments with tasks based 

on simpler stimulus features. In additional experiments they used a lexical decision task: 

targets were real English words and distractors were pseudowords. When the redundant 

targets were two identical copies of the same word, there was a significantly positive 

redundant target, consistent with parallel processing. A similar result was reported by 

(Egeth et al., 1989). Other studies found consistent positive effects for lexical decision with 

identical words present to the left and right of fixation: Hasbrooke & Chiarello (1998) and 

Mohr and colleagues (Mohr et al., 1994, 1996).  

However, a redundant target effect for identical words might be explained by 

facilitation at a sub-lexical level (Abrams & Greenwald, 2000; Grainger et al., 2014)1. Thus, in 

we focus on Mullin and Egeth (1989)’s second lexical decision experiment, in which the 

two words on redundant target trials were different from each other. The redundant 

target effect was then significantly negative, meaning that response times were slowed by 

the addition of a second target. 

In summary, most redundant target studies of word recognition found a positive 

effect, although there are two examples of either zero effect or a negative effect. There 

was evidence for positive effects when the redundant targets were identical words but 

not when they were two different words. In the study below we focus on parallel 

 
1 Nonetheless, presenting copies of the same word across the field provides a redundancy gain that might help 
patients with macular degeneration to read, with rapid serial visual presentation (Snell et al., 2022).  
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processing of two non-identical targets. This is motivated by a long-term goal of 

understanding processing capacity limits that affect reading, when neighboring words 

are not identical. The literature reviewed above also indicates that the direction of the 

redundant target effect might depend on the subject’s task (lexical decision or semantic 

categorization), on the mode of response (go/no-go or choice), and on whether the 

experiment includes mixed trials in which a target is paired with a distractor. In the new 

experiments reported below, we investigate all those factors, and compare lexical and 

semantic tasks to a font color task. In doing so we also test new models of parallel and 

serial processing that consider both response time and accuracy.   

    

Response time and accuracy in redundant target effects 

Most of the redundant target studies reviewed above focused on only correct 

response times and use tasks in which accuracy is near ceiling. Other studies have 

focused on accuracy, for instance in the context of spatial summation (Robson & Graham, 

1981; Verghese & Stone, 1995). One important study compared redundant target effects on 

accuracy and response time (Mordkoff & Egeth, 1993). This work has shown that typical 

parallel models predict positive redundant target effects for accuracy as well as response 

time.  

As shown in the following section on our new theory, serial processing of the 

individual stimuli can lead to a negative effect of redundant targets on response time. This 

novel result hinges on the possibility of errors: if the first target to be processed is 

misidentified as a distractor, then search continues, and the second target may be 

correctly identified. Those correct responses increase the mean response time for two-

target displays compared to correct responses to single target displays. Thus, our new 

theory explicitly considers the accuracy of each stimulus recognition process when 

predicting response times.  

 



 11 

New generalizations of standard models generate novel predictions 
 

The new theory generalizes previous models of pure response time by adding the 

possibility of errors (misclassifying targets as distractors or vice versa). We focus on 

models that for decades have been central to the literature on visual search and 

redundant targets: the standard unlimited-capacity parallel model and the standard 

serial model. We then also develop variants of fixed-capacity parallel models, which are 

novel in the study of redundant target effects. The Appendix contains full mathematical 

descriptions of these three classes of models. Here we describe them in intuitive terms 

and emphasize the qualitative redundant target effects that they each predict.  

Our goal in building this new theory is to compare the qualitative predictions of 

the various models: whether they predict positive, negative, or zero redundant target 

effects on response time and accuracy. Our goal is not to quantitatively fit models to our 

data; that is a different endeavor that we leave for the future (see also Cox & Criss, 2019). 

For now, it is sufficient to generate qualitative predictions that allow experimental data 

to rule out some models.  

Figure 2 illustrates the typical range of predicted redundant target effects for each 

class of model that incorporates errors. The standard serial model predicts negative 

effects. The standard unlimited-capacity parallel model predicts positive effects. The 

standard fixed-capacity parallel model can predict either negative or positive effects. 

These results of the new theory are described in more detail in the following paragraphs.  
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Figure 2: Model predictions. For each type of model, we plot the range of predicted redundant 
target effects on correct response times. For all models we assume that for single-target trials, 
errors occur on 5% of trials and the mean correct response time is 600 ms. Each model’s range 
encompasses the smallest and largest effects that we generated with the parameters described at 
the end of the Appendix.   
 

Predictions of Our Serial Model 

We start with the standard self-terminating serial model developed for response 

time (Townsend & Nozawa, 1995). Like others of its type, it assumes discrete component 

processes for each stimulus. In addition, it allows time for residual processes before a 

response is made that do not depend on the stimulus. This model has been called 

standard because it includes a number of independence properties. For instance, the 

component processing time for one stimulus is independent of the component processing 

time for the other stimulus, and of the presence or absence of the other stimulus and the 

other stimulus’s features (see Appendix). We add to this model the possibility of an error 
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(i.e., a stimulus is judged incorrectly) and additional independence assumptions 

concerning the errors.  

The most important result is that this model predicts a negative redundant target 

effect as long as accuracy is below 100% correct. This is unlike the corresponding pure 

response time model that predicts no effect of redundant targets. This different result 

arises from errors in processing one of the two targets: if the first target to be processed 

is mis-identified as a distractor, processing continues for the second stimulus. If this 

second target is correctly identified, then this correct response time is included in the 

analysis with the other trials in which the first target was processed correctly. Thus, the 

correct response times for the redundant target condition are a mixture of two cases: those 

trials in which the first target was correctly identified and the response was made quickly, 

and those trials in which the first target was not correctly identified and processing 

continued to the second target. This new result makes the serial model with errors more 

distinctive from the parallel models, in terms of correct response times. The predictions 

for errors are discussed below.  

Quantitatively, this model’s predicted redundant target effect is given by Equation 

7 in the Appendix, which is repeated here:  

𝜇!,#$%%&#! − 𝜇!!,#$%%&#! = −
(1 − 𝑝!)
(2 − 𝑝!)

𝐸*𝑫!,'(#$%%&#!,. 

The redundant target effect is the difference between the mean correct response time for 

a single target (µt,correct) and the mean correct response time for two targets (µtt,correct). This 

effect depends on only two factors, the probability correct on single-target trials, pt, and 

the mean component processing time for a single target when the participant makes an 

error (a ‘miss’ response), 𝐸*𝑫!,'(#$%%&#!,. 

 Crucially, the serial model predicts a negative redundant target effect whenever 

there are errors (i.e., whenever some targets are misidentified as distractors). An 
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illustration of this prediction is in Figure 2 (leftmost bar).  For this illustration, we assume 

that for single-target trials, accuracy pt is 0.95 (5% errors) and the mean correct response 

time is 600 ms. As described in the Appendix, we assume a residual time of 200 ms, which 

yields a component processing time of 400 ms. The upper end of the range is predicted 

with the assumption that the mean component processing time for an error is equal to 

the mean component processing time for a correct response. The lower end of the range 

is predicted with the assumption that the mean component processing time for an error 

is twice that for a correct response.  

Predictions of Our Unlimited-Capacity, Parallel Model 

 Our second result concerns the standard, self-terminating, unlimited-capacity 

parallel model with errors. It assumes that two stimuli are processed in parallel and 

independently. There are two forms of independence for this model: first, “selective 

influence”: each stimulus is processed in a spatially selective channel that is not 

influenced by the features of other stimuli. Second, the speed and accuracy of each 

stimulus process is not affected by the absence or presence of any other stimuli that are 

simultaneously processed.  

As previously developed, this model without errors predicts a positive redundant 

target effect. We show that this positive effect generalizes even when errors occur. Errors 

can reduce the size of the effect, but it always remains positive. Thus, there remains a 

sharp contrast in the predictions for this parallel model and the standard self-terminating 

serial model. 

 The predictions of this parallel model are given by Equation 17 in the Appendix:  

𝜇!,#$%%&#! − 𝜇!!,#$%%&#! = .
	1

2 − 𝑝!
0𝐸*𝑫!,#$%%&#!, − .

𝑝!
2 − 𝑝!

0 𝐸*min4𝑫!!,#$%%&#! , 𝑫!",#$%%&#!6, 

Here, pt is the probability correct on single-target trials, E[Dt,correct] is the mean correct 

component processing time for a single target, and E[min{Dt1,correct, Dt2,correct}] is the mean of 
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the minimum of the two component processing times when two targets are presented 

and judged correctly. 

 The predicted effect is always positive. This is primarily because the model’s 

response to two targets is driven by whichever of the two stimulus processes finishes 

first, hence the “min” function in the equation above. On average this is faster than the 

response to a single target. The equation also makes clear why the predicted effect is 

always positive: it is the difference between two products, and the first is always larger. 

This must be the case, as is clear when examining each part of the two products 

separately. First: 

.
	1

2 − 𝑝!
0 ≥ 	.

𝑝!
2 − 𝑝!

0 

because 0≤pt≤1. Second:  

𝐸*𝑫!,#$%%&#!, > 	𝐸*min4𝑫!!,#$%%&#! , 𝑫!",#$%%&#!6, 

because the mean difference between two identically distributed (non-negative) variables 

is always less than the mean of one of those variables alone.  

 An illustration of this prediction is the rightmost bar in Figure 2. For this 

illustration, we used predictions of two specific models described in the Appendix. They 

differ in the nature of the stochastic evidence accumulation process: how activation of 

each stimulus channel triggers a decision to respond. The upper point is for a diffusion 

model with parameters that generate large redundant target effects. The lower point is 

for a linear ballistic accumulator model with parameters that generate relatively small 

redundant target effects. While not strict limits, these model outputs illustrate the range 

of predictions from the standard, self-terminating, unlimited-capacity parallel model. 

They are always positive.  
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Predictions of Our Fixed-Capacity, Parallel Models 

The parallel model that can most easily mimic a serial model is one that has limited 

capacity. The limited capacity slows processing when there are two stimuli and thus  

reduces and possibly eliminates the redundant target effect. Unfortunately, this model is 

so general that it does not make very specific predictions. Here, we consider a special case 

of the limited-capacity parallel model: the fixed-capacity parallel model. The idea of fixed 

capacity is that a set of parallel processors extract the same total amount of information 

from multiple stimuli as they do from a single stimulus. Thus, splitting a fixed set of 

‘resources’ between multiple stimuli introduces a cost. Most of the prior work with this 

model has been in the domain of accuracy (Scharff et al., 2011; Shaw, 1980; White et al., 

2018). Here we also introduce a slowing to processing time when a fixed amount of 

resources are divided between two targets, as compared to when only one target is 

present.    

We investigated two special cases of self-terminating fixed-capacity parallel 

models in which we assume a particular stochastic evidence accumulation process for 

each stimulus being processed. Predictions of these two special cases define the range of 

redundant target effects plotted in Figure 2 (middle bar). First, with a diffusion process 

of sensory evidence accumulation (Palmer et al., 2005), the model yields positive 

redundant target effects on correct response times, for all relevant parameter values (as 

well as a positive effect on accuracy). That is because each stimulus component process 

has variable completion times, but when two targets are present, two processes race to 

trigger the response (as for the unlimited-capacity parallel model). That leads to a 

statistical benefit on average, which can outweigh the slowing caused by fixed capacity. 

This prediction defines the upper end of the range of effects predicted by the fixed-

capacity parallel model in Figure 2.  

However, with a linear ballistic accumulator (LBA) process (Brown & Heathcote, 

2008), the fixed-capacity, parallel model can predict a negative redundant target effect on 



 17 

correct response time (a slowing), despite a positive effect for accuracy. That is because 

the component processing times are less variable in the LBA model than the diffusion 

model. Thus, there is less of a benefit from the “racing” of two parallel processes, and the 

slowing due to the capacity limits reveals itself as a negative redundant target effect. This 

is illustrated in Figure 2 by the lower end of the range of predicted effects for the fixed-

capacity model. The key point is that among many parallel models that generate positive 

response time effects of redundant targets, there are parallel models with fixed capacity 

that yield the opposite result.  

Thus, there is an asymmetry in using the redundant target paradigm to test the 

serial model and fixed-capacity parallel models. All the models we consider here are 

assumed to be standard, self-terminating models. A positive redundant target effect 

rejects this serial model, but a negative redundant target effect does not reject all fixed-

capacity parallel models. Thus, the redundant target paradigm is an excellent test for 

rejecting both the serial model and the unlimited-capacity parallel model, but it cannot 

distinguish the serial model from some fixed-capacity parallel models. Nevertheless, it is 

relevant to distinguishing specific serial and parallel models. Indeed, many experiments 

have used this test to rule out the standard self-terminating serial model (e.g., van der 

Heijden, 1975), and most redundant target studies of word recognition also claim to have 

rejected the serial model (as reviewed above).  

Predictions About Errors  

All of the models described above predict a positive redundant target effect on 

accuracy (that is, fewer errors on trials with 2 targets than on trials with 1 target). This is 

not a surprise for typical parallel models that have been investigated in summation 

experiments of accuracy alone (Graham et al., 1978). What is new is that this result also 

occurs for our serial model, even though that model predicts slower response times for 

two targets. The reason is that when two targets are present and processed sequentially, 
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there are two chances to correctly detect target presence, so accuracy increases compared 

to when only 1 target is present – even though doing so takes more time on average. 

While this result for errors does not distinguish between the serial and parallel models, 

it introduces a result that is specific to errors and that is not accounted for by pure 

response time models. 

 

Predictions about response time variability 

 These models also make differing predictions about the distributions of correct 

response times. The Appendix summarizes these predictions within the sections for each 

model. The final section of the Appendix also includes simulations of response time 

distributions. The standard serial model assumes that on some trials, one target is 

misidentified and then the second target is processed correctly. Those trials add long 

response times to the distribution. However, our simulations show that the standard 

serial model does not clearly predict a bimodal distribution of correct response times on 

two-target trials. Instead, it predicts a distribution with a longer rightwards tail and a 

larger standard deviation than the distribution for single target trials. The redundant 

target effects on response time variability are small relative to the observed variability 

within each condition. The unlimited-capacity parallel model predicts the opposite: 

decreased variability for redundant target trials. Different flavors of the fixed-capacity 

parallel model can predict either an increase or decrease in the variability of response 

times.    

 In the results below, we do not analyze response time distributions or variability, 

because the experiments were not designed to detect such effects. Those effects are 

predicted to be small relative to the variability within each condition and difficult to 

detect empirically. Moreover, the model predictions for increases or decreases in 

variability mirror the predictions for the response time means, which our experiments 

were optimized to measure.  
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Overview of the experiments 

We conducted four experiments that differed in three factors, which are meant to 

span the range of what is typical in redundant target studies. The first factor was how 

participants responded to the stimuli. “Go/No-Go” is a procedure that requires the 

participant to press a button if they see a target and to make no response if they see no 

target. This is the most common procedure in the redundant target literature. “Choice” 

is a procedure that requires the participant to press one of two buttons to categorize each 

stimulus display. This is the most common procedure in the larger visual search 

literature. As discussed above, some prior research suggests that a go/no-go procedure is 

more sensitive for detecting redundant target effects (Grice & Reed, 1992; van der Heijden 

et al., 1983). Previous studies about word recognition have used a mix of go-no/go and 

choice procedures, so we used both in different experiments.  

The second factor we manipulated was whether the words presented on two-word 

trials were “correlated.” In the “correlated” design, the two words were either both 

targets or both distractors. In the “uncorrelated” design, there also were trials in which 

one target was paired with one distractor. The correlated design maximizes the fraction 

of trials that test the standard serial model (one target alone vs two targets). The 

uncorrelated design requires more trials but is more typical in visual search generally. 

The inclusion of mixed trials might affect the participant’s strategy and encourage them 

to process both stimuli, thus we use it in Experiments 3 and 4 to compare to the correlated 

design. As elaborated in the General Discussion, the uncorrelated and correlated designs 

have different contingencies (i.e., the probability of a target at one location given what is 

at the other location) that might change the participant’s strategy (Mordkoff & Yantis, 

1991). But within each experiment, the contingencies were the same for the three tasks 

(lexical, semantic, and color).   
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The third factor we manipulated was the position of the words. In Experiment 1-

3, we presented words directly above and below fixation in order to match the design of 

Mullin & Egeth (1989). This allows both words to be close to fixation and easily legible. 

In Experiment 4, we sought to make the displays more like natural English reading by 

arranging the words horizontally, just to the left and right of fixation, with a single letter 

space between them.  

As noted above, when two words were present, they were always two different 

words. This differs from some previous redundant target experiments that used identical 

words on two-target trials (Hasbrooke & Chiarello, 1998; Mohr et al., 1994; Mullin & Egeth, 

1989) and might produce effects due to sub-lexical facilitation. The one published case of 

a negative redundant target effect was in a lexical decision task with non-identical 

redundant targets (Mullin & Egeth, 1989) 

In each experiment, we also measured performance in three different tasks (color 

detection, lexical decision, and semantic categorization), all with similar stimuli. The color 

task required participants to judge a low-level visual feature of the words, and served as 

a positive control condition for which we expected positive redundant target effects. The 

lexical decision task requires the subject to distinguish real English word targets from 

pseudoword distractors. The semantic categorization task requires categorizing words 

either as targets that belong to a category of “living things” and distractors that belong to 

a category of “non-living things”. The semantic and lexical tasks might tap into different 

levels of linguistic processing, and have both been used in prior redundant target studies 

(Egeth et al., 1989; Mullin & Egeth, 1989). In sum, within each of our four experiments, we 

carry out a side-by-side comparison of redundant target effects that arise in three tasks 

using similar stimuli. The tasks differ in which they require low-level feature detection, 

lexical access, or semantic categorization. Altogether, this study includes over 255,000 

trials of data from a total of 326 participants.  
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General methods  

Participants: Participants were recruited from around the world using Prolific 

(www.prolific.co, accessed August 2021-April 2025). Participants gave informed consent 

in accordance with the Declaration of Helsinki and Barnard College’s Institutional 

Review Board. All participants indicated being fluent speakers who learned English as 

their first language, with no literacy difficulties, and normal or corrected-to-normal 

vision. For each task, we aimed to recruit an independent sample of 28 participants, half 

male and half female.  

The sample size was chosen on the basis of a power analysis of an independent 

pilot data set with the same design as the color task for Experiment 2 as described below. 

(Experiment 2 was actually conducted first). 11 volunteers from the Barnard College and 

Columbia University community participated, with the same inclusion criteria as in the 

main experiment. The mean redundant target effect was 29 ms, with a standard deviation 

(SD) of 17 ms. To determine the sample size for each task in the experiments, we 

calculated the minimum number of participants required for 95% power to reject the null 

hypothesis with a mean effect of 14 ms (half as large as in the pilot set) and with the same 

standard deviation. This minimum was 24 participants. In the first experiment we 

conducted (Experiment 2’s color task), an error in the online recruiting platform required 

us to recruit an additional 4 participants to reach a roughly equal number of males and 

females.  

After conducting Experiment 2, we ran another power analysis based on the 

observed the redundant target effect for the semantic task (mean = -17.5, SD = 24 ms). This 

demonstrated that N=28 suffices for 95% power to detect such a negative effect (for 90% 

power, N=23). Thus, we sought a sample size of 28 for all the experiments.  

Table 1 indicates the number of subjects and exclusions for all experiments in the 

study. Across all experiments in this study, our criteria for excluding participants were: 

overall d’  less than 0.5, or more than 10% of trials excluded for response times being too 

http://www.prolific.co/
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fast or too slow. In sum, 20 of 346 participants were excluded from the analysis. d’ is a 

theoretically bias-free measure of accuracy that combines the hit rate (proportion correct 

on target-present trials) and false alarm rate (proportion incorrect on target-absent trials). 

An overall d’ of 0.5 corresponds to roughly 60% correct (assuming a neutral criterion). 15 

participants were excluded because d<0.5. In all experiments, individual trials were also 

excluded if the response time was too fast (<250 ms from stimulus onset) or too slow 

(>3000 ms). The mean percentages of trials excluded for those reasons (amongst included 

participants) are listed in Table 1. Any participant for whom more than 10% of trials met 

those exclusion criteria was excluded entirely from the data set. In total, 5 participants 

were excluded for this reason alone.   

Experiment Task 
N 

tested 
N 

excluded 
N 

included 
N 

Female 
Mean age 
[min max] 

RTs too 
fast 

RTs too 
slow 

1: Go/No-Go, 
correlated 

Color 30 1 29 12 32 [19 50] 0.27% 0.00% 

Lexical 28 0 28 12 32 [20 47] 0.19% 0.00% 

Semantic 28 0 28 14 30 [20 47] 0.06% 0.00% 

2: Choice, 
correlated 

Color 29 0 29 16 27 [18 50] 0.10% 0.09% 

Lexical 28 0 28 14 29 [19 48] 0.05% 0.42% 

Semantic 28 0 28 18 27 [19 50] 0.13% 0.41% 

3: Choice, 
uncorrelated 

Color 28 0 28 22 19 [18 24] 1.50% 0.27% 

Lexical 29 3 26 14 31 [20 48] 0.22% 0.40% 

Semantic 29 1 28 14 31 [20 48] 0.28% 0.49% 

4: Left/Right 
Choice, 

uncorrelated 

Color 30 8 22 10 32 [18 47] 1.63% 0.38% 

Lexical 29 3 26 9 31 [18 47] 0.63% 0.60% 

Semantic 30 4 26 12 31 [18 48] 0.82% 0.59% 
Table 1: Number of participants (N) in each experiment and task, as well as the ages in 
years of the included subjects. The two rightmost columns are the mean percentages of 
trials that were excluded for response times (RTs) being too fast (<250 ms) or too slow (>3 
s), within the included participants.   
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From Prolific we obtained self-reported data on race or ethnicity for 290 of the 

included participants. Of those, 9% were Asian, 22% were Black, 5% were more than one 

race, 61% were White, and 3% were “other.”   

 Transparency and Openness: Experiments were programmed using PsychoPy 3 

(Pierce et al, 2019) and run online with Pavlovia.org. Data were analyzed in MATLAB 

2022a (Mathworks, Inc), using the bayesFactor toolbox (https://doi.org/ 

10.5281/zenodo.4394422).  All data, analysis code, and stimulus materials have been 

made publicly available at the Open Science Framework and can be accessed at 

https://osf.io/7kn9u/. Above we report how we determined our sample size, all data 

exclusions, all manipulations, and all measures in the study. This study’s design and its 

analysis were not preregistered. 

 

Experiment 1: Go/No-Go procedure with correlated stimuli 

Methods  

Stimuli: We created and presented stimuli with PsychoPy 3 (Peirce et al., 2019), 

run through the web browser using Pavlovia (https://pavlovia.org/). Each stimulus size 

and position were defined as a fraction of the height of the participant’s screen; thus, the 

dimensions in degrees of visual angle likely varied across participants. Participants were 

asked to sit with their head roughly 1 arm’s length from their screen. A central black 

fixation cross, 4.5% of screen height in width, was present throughout each trial except 

during feedback. The stimuli consisted of letter strings, of length between 4 and 6 letters. 

The word lists are described below and provided fully in the public data repository 

(https://osf.io/7kn9u/). They were drawn in Courier font, with the height of an “o” or “x” 

occupying 3.8% of the screen height. That is roughly 0.7 degrees visual angle on a typical 

laptop at arm’s length. The specific words (or pseudowords) and font color varied across 

tasks, as described below.  

https://osf.io/7kn9u/
https://osf.io/7kn9u/
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Trial sequence: An example trial is illustrated in Figure 3A. Each trial began with 

the fixation mark present for 750 ms. Then either 1 or 2 words were presented for 183 ms. 

There were two possible word positions, centered horizontally and either just above or 

just below the fixation mark. The distance from the fixation mark to the center of each 

word was 10% of the screen height (roughly 1.8 degrees visual angle on a typical laptop 

at arm’s length). About two letter o’s would fit stacked vertically in the empty space 

between the screen center and the words.  

 
Figure 3: Stimuli and Design of Experiments 1 and 2. (A) Example trial sequence with two color 
targets. (B) Examples of the trial types for the color task. The text above each panel indicates the 
percentage of trials that were of that condition. “D” = distractor, “T” = target.   
 

The trials were evenly distributed between these 4 conditions: 1 target, 1 distractor, 

2 targets, and 2 distractors. Figure 3B illustrates examples of each trial type, and Table 2 

lists the proportion of trials assigned to each combination of stimuli at the top and bottom 

locations. Each location could have no word (‘None’), a distractor word, or a target word. 

When just 1 word was present, it was equally likely to be in the top or bottom location. 

There were never any mixed pairs of 1 target and 1 distractor (unlike in Experiments 3 
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and 4).  Thus, in this experiment, the words in each display were “correlated,” meaning 

that when there were 2 words present, they were either both distractors or both targets.    

After the words disappeared, the participant was free to respond. In these go/no-

go tasks, the participant was instructed to press the spacebar as soon as they detected a 

target, and to do nothing if they saw no targets. Up to 1 second was allowed for a 

response. After the response interval elapsed or was ended by a keypress, feedback was 

given: the fixation cross was replaced with a smiley face for 500 ms if the response was 

correct, or a neutral face for 750 ms if the response was incorrect. Then, the fixation cross 

reappeared and another trial began (except when it came time for a break between blocks, 

see below). 

  Bottom word 

  None Distractor Target 

To
p 

w
or

d  

None N/A 0.125 0.125 

Distractor 0.125 0.25 0 

Target 0.125 0 0.25 

Table 2: The probability of stimulus pairings at the top and bottom locations in 
Experiments 1 and 2. The word at each location was either absent, a distractor, or a target. 
The green shading highlights conditions when 2 words were present. In this design, the 
two words were perfectly correlated, meaning that they were either both targets or both 
distractors.  

  Procedure: Once they accessed the experiment in Pavlovia, participants read a 

consent form and indicated their acceptance by pressing a key to continue. The program 

advanced through four pages of instructions with example stimuli. Then the participant 

conducted practice trials, which continued for at least 50 trials until the participant had 

responded correctly to 36 of the most recent 40 trials. Having completed that, they began 

the main experimental trials which came in 10 blocks of 60 trials each. Before starting the 
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first block, participants were reminded to keep their head 1 arm’s length from the screen, 

maintain central fixation, and to respond as quickly as possible without making 

unnecessary errors. Between each block they were given written feedback about their 

percent accuracy (P) and the opportunity to rest. If P for the most recent block was at least 

96%, the feedback said, “Very nice! You got {P}% correct. In the next block, try to go a bit 

faster, while still getting at least 90% correct.” If P <= 72% correct, the feedback said, 

“Good job. You got P% correct. In the next block, try to get above 90% correct.” Otherwise, 

the feedback simply said, “You're doing great!” Participants completed the whole 

experiment in roughly 30 minutes, on average.  

Color detection task: Each word was either drawn in all dark gray letters (RGB 79, 

79, 79 out of 255) or its letters alternated between dark red (RGB 115, 18, 18) and dark 

green (RGB 17,102,15). These colors were 85% saturated, relative to the maximum 

possible on the screen. Targets were defined as words written in colored letters; 

distractors were words written in gray letters. The words were drawn from the same set 

as in the semantic categorization task (see below).  

Lexical decision task: All the letters were dark gray (RGB 79, 79, 79). There was a 

total of 246 items in the stimulus set, half real English words and half pronounceable 

pseudowords. Within both categories, 33 had 4 letters, 46 had 5 letters, and 44 had 6 

letters. The real words were all nouns that were also used in the color & semantic tasks, 

with mean lexical frequency 16.4 occurrences per million (ranging 0.3-391). The 

pseudowords were generated using MCWord (Medler & Binder, 2005) to have trigram 

statistics (the probability of any sequence of three letters) matched to real words. Across 

the 600 trials in the experiment, each word was repeated on average 3.7 times. We took 

care to match the mean lexical frequency and word lengths across trials with 1 real word 

and trials with 2 real words.  

Semantic categorization task: All the letters were dark gray as in the lexical task. 

There was a total of 246 English nouns in the stimulus set, half of which referred to living 
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things and half to non-living things. Within the living category there were 39 4-letter 

words, 42 five-letter words, and 42-six-letter words. They referred to animals (e.g., “bird,” 

“turtle”, “woman”) and plants (e.g., “fern”, “orchid”; and one was “fungus”).  The non-

living category had 37 4-letter words, 42 five-letter words, and 44-six-letter words. They 

referred to common household items (e.g. “towel”), pieces of clothing (“e.g. “shoe”), and 

types of buildings (e.g., “cabin”), as well as natural non-living things (e.g., “snow”).  The 

distributions of lexical frequencies in the living and non-living categories were highly 

overlapping, with means 19.7 and 14.5, respectively. Each word was repeated on average 

3.7 times within the experiment.  

Analysis: We computed two measures of performance in each condition: the mean 

response time on correct trials, and the percent of trials with incorrect responses (errors). 

In most cases we focus on trials with targets, because only those measures test our models 

that assume self-terminating search for targets. For both measures, we compared the 

means on trials with two targets to trials with one target using paired t-tests. All t-test p-

values were corrected for false discovery rate across the 12 tests done for each measure 

in the entire study (Benjamini & Hochberg, 1995). We also used bootstrapping to get 95% 

confidence intervals (CI) of each mean difference. Lastly, we supplement our pairwise 

tests with Bayes factors (BFs), which quantify the strength of evidence (Rouder et al., 

2009). The BF is the ratio of the probability of the data under the alternate hypothesis (that 

two means differ) relative to the probability of the data under the null hypothesis (that 

there is no difference). These ratios are sometimes called BF10: a BF of 10 would indicate 

that the data are 10 times more likely under the alternate hypothesis than the null. BFs 

between 3 and 10 are regarded as substantial evidence for the alternate hypothesis, and 

BFs greater than 10 as strong evidence. Conversely, BFs between 1/3 and 1/10 are 

considered substantial evidence for the null hypothesis, etc. We computed BFs using the 

bayesFactor MATLAB toolbox (Krekelberg, 2024)  
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We provide both p-values and BFs so that the reader may be fully informed to 

judge the strength of evidence. We make strong claims about rejecting a hypothesis only 

when a test that yields both a low p-value and a high BF.  

To compare across tasks across experiments, we also fit linear mixed effect (LME) 

models to single-trial data, with fixed effects of the task, the set size (number of words), 

random intercepts and slopes by participant, and random effects for individual stimulus 

items. We use these LMEs to compare redundant target effects across tasks, and they 

yield F statistics similar to a two-way repeated measures ANOVA (but with degrees of 

freedom that take into account all the individual trials). The p-values for these tests were 

corrected for false discovery rate across all four experiments.  

 Estimates of the redundant target effect are complicated by the possible 

differences in performance between the two single-target conditions (Mullin et al., 1988). 

Such differences are the rule in multisensory (e.g. auditory-visual) experiments, but even 

occur with two visual stimuli at isoeccentric locations. For example, in the current 

experiments, single words were judged more accurately and quickly at the top location 

than at the bottom location (see results below).   

 Without such a difference between locations, the redundant target effect can be 

simply estimated with the “averaging baseline” approach: the difference between the 

two-target condition and the average of the one-target conditions (averaging across 

locations). But with a known difference between locations, the averaging approach can 

overestimate the size of the redundant target effect. An alternative is the “fastest 

baseline” approach: to estimate the effect as the difference between the two-target trials 

and trials with one target at the location that produces faster responses in the mean. This 

approach reduces the estimated magnitude of a positive redundant target effect. It is 

therefore more conservative for the purpose of estimating the positive redundant target 

effects predicted by many parallel models. Some authors recommend an alternate 

approach to avoid positive biases in the redundant target effect estimation: the baseline 
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is set for each subject to their individual fastest location (if they have a significant bias) 

(Miller & Lopes, 1988).  

 The goal of the current study is to investigate possible negative redundant target 

effects (slower responses to 2 targets than to 1 target). If we were to compare one-target 

RTs at the fastest location to two-target RTs, we would overestimate the magnitude of a 

negative effect. Thus, we use the averaging baseline throughout this article because it is 

more conservative for detecting negative effects. 

 

 

Figure 4: Redundant target effects in Experiment 1. These bar plots show the mean improvement 
in (A) mean correct response time (RT) and in (B) accuracy for 2 targets compared to 1 target. The 
mean performance levels from which these difference scores were derived are in Figure 5. Error 
bars are ± 1 SEM. Asterisks indicate that the mean effect is significantly different from 0 
(***p<0.001, **p<0.01, *p<0.05, FDR-corrected).  
 

Results 

Response times: Figure 4A shows that in the color task, there was a positive 

redundant target effect: a speeding of correct responses to two targets compared to one, 

by 31 ms on average. However, in the semantic task, there was a significantly negative 

effect (a slowing of responses) of 11 ms on average. In the lexical decision task, there was 
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no effect of redundant targets. Table 3 lists the statistics on each effect. The mean 

response times in each individual condition (rather than the differences between one and 

two targets) are shown in the top row of Figure 5.  

To compare the redundant target effects across tasks, we also fit three linear 

mixed-effect models to single-trial correct response times (target-present trials only). 

Compared to the color task, both the lexical and semantic tasks had significantly different 

redundant target effects (both F>36, p<10-8, BF>106). The lexical and semantic tasks 

yielded effects that were not significantly different (F(1, 15475)=3.85, p=0.050, BF=2.3).  

 
Figure 5: Mean performance in each task of Experiment 1, plotted separately for targets and 
distractors, for set size 1 vs. 2. (A) Mean correct response times. Note that there are no correct 
response time data for distractors, because in these go/no-go tasks, the correct response to 
distractors was to not press any key. (B) Percent of trials with errors. Data for distractors are 
plotted with open symbols and dashed lines (showing how often the participants made false 
alarms). Error bars are ± 1 SEM.  
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Accuracy: On average, collapsing across all conditions, participants achieved 93%, 

88%, and 91% correct accuracy in the color, lexical, and semantic tasks, respectively 

(SEMs = 1, 2, and 1%).  Figure 4B shows the mean improvements in accuracy caused by 

a redundant target compared to trials with a single target. There was a significant 

improvement in all three tasks (fewer misses; see statistics in Table 3). The mean 

percentage of trials with errors in each condition (including for trials with distractors) are 

plotted in the bottom row of Figure 5. Compared to the color task, both the lexical and 

semantic tasks had smaller redundant target effects on accuracy for detecting targets 

(both F>24, p<10-6, BF>3). The effects did not differ significantly between the lexical and 

semantic tasks (F(1, 16776)=0.75, p=0.39, BF=0.86).   

Task 
1 Targ. 
Mean 

2 Targ. 
Mean 

Effect 
Mean 

Effect 
SEM 95% CI t p BF 

  Correct response time (ms) 
Color 471.5 440.4 31.1 2.4 [26 36] 12.50 6.75x10-12 1.37x1010 
Lexical 548.2 548.6 -0.4 3.4 [-7 7] -0.11 0.915 0.20 
Semantic 564.6 575.5 -10.9 3.0 [-17 -5] -3.60 0.002 27.48 
  Errors (percent) 
Color 11.48 3.79 7.69 2.05 [4.49 12.61] 3.69 0.001 34.35 
Lexical 9.38 7.27 2.11 0.80 [0.75 3.88] 2.60 0.018 3.26 
Semantic 8.39 6.49 1.90 0.85 [0.51 4.03] 2.19 0.038 1.54 

Table 3: Statistics on redundant target effects in Experiment 1, for correct response times 
(top three rows) and error rates (bottom three rows). The columns “1 Targ. Mean” and “2 
Targ. Mean” refer to the mean response times and error rates on 1- and 2-target trials, 
respectively. The other columns list statistics on the redundant target effect, calculated as  
the mean improvement in response times and error rate, contrasting 1-target displays 
(averaged over sides) vs. 2-target displays. Note that the errors here are all misses 
(misclassifying a target as a distractor).  The degrees of freedom for the t-tests was 27. For 
each measure (response time or accuracy), p-values are corrected for false discovery rate 
across all 12 comparisons including all 4 experiments in the study. BF = Bayes Factor. 

 Differences between top and bottom sides: on single-target trials, participants 

generally made faster correct responses and fewer errors for targets at the top location 

compared to the bottom location. Correct RTs were on average 30, 33, and 15 ms faster 
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for the top location in the color, lexical, and semantic tasks, respectively (SEMs = 5 ms, all 

FDR-corrected p<0.01, BFs=191, 2x104, and 9, respectively). Error rates were on average 5, 

8, and 2% lower at the top location in those three tasks, respectively (SEMs = 4, 2, and 1%; 

only significant in the lexical task, p<0.0001, BF=2514).  

As discussed in the Analysis section above, an alternate calculation of the 

redundant target effect is the difference between trials with two targets and trials with 

one target at the top location only, because RTs tend to be faster for words at the top. This 

shifts estimates of the mean redundant target effect down, rendering even the lexical 

task’s effect significantly negative (mean = -16 ms, p=0.001) while maintaining a 

significantly positive effect in the color task (mean = 23 ms, p=1x10-8). Given that we are 

most interested in detecting the negative effects predicted by our generalized serial 

model, in the primary analyses above (Table 3) we use the approach that is more 

conservative for negative effects: comparing two-target responses to the average of 

responses to single targets at the top and bottom locations.  

Discussion 

The redundant target effects in the first experiment suggest that the colors of the 

letters within two words can be processed in parallel, leading to speeding of response 

times. However, the meanings of the two words are not necessarily processed in parallel. 

This is because the presence of a second word target in the lexical decision task yielded 0 

improvement in response time, and the semantic categorization task yielded a significant 

slowing of response time.  

Our generalized models show that such a negative response time effect is 

consistent with the standard serial model, even when accompanied by an increase in 

accuracy (see Appendix). It can be explained by participants occasionally mis-

categorizing the first target they process as a distractor, then going on to correctly process 

the other target, with a slower response time compared to correct trials with single 
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targets. The negative effect in the semantic task is also consistent with some (but not all) 

fixed-capacity parallel models. One potentially interesting result is that the negative 

redundant target effect was significant in the semantic task but not the lexical task. 

However, we lack strong statistical evidence that those two results were significantly 

different from each other.   

In theory, the comparison of two-target trials to one-target trials could be 

influenced by sensory interactions between the two simultaneous targets, such as 

crowding. However, the words were presented on opposite sides of fixation at distances 

too great for crowding (Pelli & Tillman, 2008). Another possible concern is that 

participants simply are not able to divide their attention between those two locations 

simultaneously. However, the positive redundant target effect in the color task rules out 

that concern as an explanation for the non-positive effects in the lexical and semantic 

tasks.  

  It is also noteworthy that redundant targets improved accuracy in all three tasks 

(although that effect was significantly larger in the color task than in the other two). Is 

that evidence of parallel processing of two words in all three tasks? Not necessarily: the 

serial model also predicts improvements in accuracy that go along with slowing of 

response speeds. This is merely a statistical facilitation: there are two chances to reach the 

correct decision when two targets are present. Also note that, as shown in the bottom row 

of Figure 5, errors on trials with distractors increase when the set size is 2 compared to 1 

(a decrease of accuracy, opposite to the pattern for trials with targets). This might also be 

consistent with a shift in decision criterion, as participants are somewhat more likely to 

report “target present” when they see two words than when they see one word.  

 The color task was overall easier than the other two tasks, with faster RTs and 

lower error rates. Experiment 4 addresses this issue by making the color task more 

difficult that the other two tasks. As shown below, the conclusions did not change.     
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Thus, the entire data set allows us to rule out the standard serial model only for 

the color task, which yielded a positive redundant target effect in response times as well 

as  accuracy. The semantic task shows a negative effect on response times, which is quite 

rare in the redundant target literature and can be readily accounted for by the standard 

serial model.  

Experiment 2: Choice procedure with correlated stimuli 

Experiment 1 assessed redundant target effects with the simplest possible design 

(“correlated stimuli”, meaning no trials with mixed targets and distractors) and the 

procedure thought to be most sensitive (go/no-go). In the next two experiments, we used 

variations of the paradigm that have previously been used to study word recognition and 

might alter the participant’s strategy. In Experiment 2, we used the same “correlated” 

stimulus conditions as Experiment 1, but we required participants to make a choice 

response (target present vs absent) on every trial.  

 

Method 

Participants: Participants were recruited in the same way as in Experiment 1. See 

Table 1 for counts. Applying the same accuracy criteria as in Experiment 1, no 

participants had to be excluded. 

 Stimuli and procedure: All methodological details were the same as in Experiment 

1, except the participant had to make a categorization judgment on every trial: press the 

left arrow if no target was present on the screen, or the right arrow if any targets were 

present on the screen. The response interval was unlimited, but participants were 

requested to “respond as quickly as you can without making unnecessary errors.”   
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Results 

Response times: Figure 6A demonstrates that the redundant target effects on 

correct response times in Experiment 2 were similar to those in Experiment 1. There was 

a significant speeding of response times in the color task (by 27.7 ms on average), no 

significant effect in the lexical task (mean = -5.1 ms), and a significant slowing in the 

semantic task (by -17.5 ms). Statistics on the effect for each task are reported in Table 4. 

Compared to the color task, both the lexical and semantic tasks had significantly different 

redundant target effects (both F>18, p<10-4, BF>103). The lexical and semantic tasks 

yielded effects that were not significantly different (F(1, 15141)=2.61, p=0.11, BF=0.97). See 

the top row of Figure 7 for mean correct response times in each condition separately.  

 

Figure 6: Mean redundant target effects in Experiment 2. Format as in Figure 4. 
 
  Accuracy: On average, collapsing across all conditions, participants achieved 94%, 

90%, and 92% correct accuracy in the color, lexical, and semantic tasks, respectively 

(SEMs = 1%).  Figure 6B plots the mean improvements in accuracy (fewer misses) caused 

by redundant targets, which were significant in all three tasks (as also reported in Table 

4). The mean percent errors in each condition are plotted in the bottom row of Figure 7.  

Compared to the color task, both the lexical and semantic tasks had smaller redundant 
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target effects on accuracy (both F>21, p<10-5, BF>50). The redundant target effects did not 

differ significantly between the lexical and semantic tasks (F(1, 16713)=0.03, p=0.85, 

BF=0.34).  

 
Figure 7. Mean performance in each task of Experiment 2. Format as in Figure 4.  

Task 
1 Targ. 
Mean 

2 Targ. 
Mean 

Effect 
Mean 

Effect 
SEM 95% CI t p BF 

  Correct response time (ms) 
Color 534.5 506.8 27.7 3.9 [20 35] 6.99 5.3x10-7 115,304 
Lexical 669.7 674.8 -5.1 5.2 [-15 5] -0.96 0.3757 0.31 
Semantic 664.9 682.4 -17.5 4.6 [-29 -10] -3.75 0.0011 38.7 
  Errors (percent) 

Color 11.88 3.69 8.19 1.15 
[6.18 
10.88] 7.00 1.4x10-6 118,545 

Lexical 12.08 8.99 3.09 0.72 [1.60 4.49] 4.24 0.0006 121.4 
Semantic 9.15 6.77 2.39 0.58 [1.26 3.52] 4.04 0.0008 76.0 

Table 4: Statistics on redundant target effects in Experiment 2, formatted as in Table 3. 
The degrees of freedom was 28 for the color task and 27 for the others. 
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Differences between top and bottom sides: Correct RTs were on average 35, 36, 

and 31 ms faster for single targets the top location in the color, lexical, and semantic tasks, 

respectively (SEMs = 7, 10 and 6 ms, all p<0.01, all BF>35). Error rates were 8, 7, and 3% 

lower for single targets at the top location in those three tasks, respectively (SEMs = 2, 1, 

and 1%, all p<0.01, all BF>13).  

Discussion 

 The results of Experiment 2, which used a choice procedure, were consistent with 

the results of Experiment 1, which used a go/no-go procedure. The redundant target 

effects on response times were consistent with parallel processing in the color task and 

serial or fixed-capacity parallel processing in the lexical and semantic tasks. Again, the 

redundant target effect in the semantic task was significantly negative.  

   

Experiment 3: Forced-choice procedure with uncorrelated stimuli  

In both experiments reported so far, the words presented simultaneously on trials 

with set size 2 were always of the same category (both targets or both distractors, 

although never the same exact words). In other words, there was a contingency between 

the category of the stimulus at one location and the category of the other. That is what we 

mean by a ‘correlated’ stimulus design. One potential drawback of this design is that the 

participant might adopt a strategy of always processing just one word, knowing that the 

other word leads to the same correct decision. (Although they cannot simply pick a side 

of the screen and always ignore stimuli presented on the other side, because half the trials 

contain just a single word that could be on either side, unpredictably). In the third 

experiment, we addressed this issue by including trials in which a target is paired with a 

distractor. Thus, the stimuli are uncorrelated. This should motivate the participant to 

process both stimuli as well as they can. Uncorrelated stimuli like this are also common 

in the wider visual search literature.  
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The “uncorrelated” design used in Experiment 3 (and 4) also differs from 

Experiments 1-2 in the “interstimulus contingencies” (Mordkoff & Yantis, 1991). These 

contingencies describe the probability of a target at one location contingent on what is 

presented at the other location. Note that within each experiment the contingencies are 

consistent across all three tasks. We take this issue up in the General Discussion.  

 

Method  

Participants: Participants in the lexical and semantic tasks were recruited and 

compensated in the same way as in Experiment 1, via Prolific. The target sample size was 

maintained at 28.  Participants in the color task were recruited from the Barnard College 

Introductory Psychology subject pool, and participated in exchange for course credit. See 

Table 1 for counts of included and excluded participants.    

  Bottom word 

  None Distractor Target 

To
p 

w
or

d  

None N/A 0.05 0.15 

Distractor 0.05 0.15 0.15 

Target 0.15 0.15 0.15 

Table 5: The probability of stimulus pairings at the top and bottom locations in 
Experiment 3. The word at each location was either absent, a distractor, or a target. The 
green shading highlights conditions when 2 words were present. In this design, the two 
stimuli were uncorrelated and independent: the conditional probability of one stimulus 
being a target given that the other was a target was 0.5. 

 

Stimuli and procedure: All details were the same as in Experiment 2, except as 

noted here. The primary difference is that 30% of trials contained mixed pairs of 1 target 

and 1 distractor. Table 5 lists the proportions of trials assigned to each type, which were 
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chosen to ensure that the categories (target vs distractor) of the upper and lower stimuli 

were independent (uncorrelated). Specifically, on two-word trials, the conditional 

probability of one stimulus being a target given that the other was a target was 0.5. In 

contrast, this conditional probability was 1.0 in Experiment 1 and 2. Another difference 

in Experiment 3 was that across the experiment, the probability of a target being present 

on any given trial was 0.75, rather than 0.5. That was true both among trials with set size 

1 and trials with set size 2. To maintain the same number of two-target trials as in 

Experiments 1 and 2, we increased the total number of trials in Experiment 3 to 1000. Each 

participated conducted 10 blocks of 100 trials each. Also, six words were added to the 

stimulus set for the color and semantic tasks (see the online data repository).   

 
Figure 8: Redundant target effects in Experiment 3. Format as in Figures 4 and 6. These bar plots 
show the mean improvement in correct response time (RT) and accuracy comparing trials with 2 
targets to trials with just 1 target and 0 distractors. The mixed-pair trials were not included in this 
analysis (but are plotted in Figure 9).  
 

Results 

Response times: Figure 8A shows that the redundant target effects were consistent 

with the prior two experiments, although somewhat magnified. As detailed in Table 6, 
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redundant targets improved responses in the color task (by 23 ms on average), but slowed 

responses in both the lexical task (-34 ms) and the semantic task (-70 ms). All three 

pairwise comparisons between these effects were significant (color vs. lexical and color 

vs. semantic: both F>27, p<10-6, BF>106; lexical vs semantic: F(1, 24587)=5.70, p=0.022, 

BF=42).  See the top row of Figure 9 for mean correct response times in each condition 

separately, including the mixed target-distractor trials, which are represented with single 

lightly-shaded symbols.  

 
Figure 9. Mean performance in each task of Experiment 3. Format as in Figures 5 and 7, 
except that this experiment included ‘mixed’ trials in which 1 target appeared with 1 
distractor.  That mixed-pair condition is represented by the single symbol with medium 
fill in each panel.  
 

Accuracy: On average, collapsing across all conditions, participants achieved 93%, 

86%, and 92% correct in the color, lexical, and semantic tasks, respectively (SEMs = 1%).  

Figure 8B plots the positive effects of redundant targets on accuracy (fewer misses), 

which were significant in all three tasks (see Table 6 for a summary of target-present 
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trials). The effect on accuracy was significantly larger in the color task than the semantic 

task (F(1,24907)=4.90, p=0.046, BF=7.5), but the other two pairwise comparisons across 

tasks were not significant (color vs. lexical: F(1, 24041)=2.71, p=0.15, BF=1.2; lexical vs 

semantic: F(1, 24145)=0.65, p=0.46, BF=0.45). The mean percentage errors in each 

condition are shown in the bottom row of Figure 9. Note that there is a larger difference 

between accuracy for targets (hit rates plotted as solid lines in Fig. 9B) and accuracy for 

distractors (false alarm rates plotted as dashed lines) in this experiment than in the prior 

experiments. This can be explained by the fact that targets were present on 75% of trials 

overall, so participants were more liberal in reporting “yes” and made more false alarms 

on distractor trials. This was a consequence of making the two stimulus categories 

independent (see Table 5 above).    

Task 
1 Targ. 
Mean 

2 Targ. 
Mean 

Effect 
Mean 

Effect 
SEM 95% CI t p BF 

  Correct response time (ms) 
Color 467.9 444.8 23.1 4.3 [15 32] 5.25 3.2x10-5 1,409 
Lexical 608.2 642.1 -33.9 5.4 [-44 -24] -6.11 5.3x10-6 8,640 
Semantic 640.6 710.7 -70.1 8.0 [-88 -56] -8.59 2.0x10-8 3.6x105 
  Errors (percent) 
Color 3.24 1.14 2.09 0.38 [1.33 2.82] 5.42 3.96E-05 2,150 
Lexical 2.66 1.50 1.16 0.29 [0.56 1.72] 3.95 0.0010 56.7 
Semantic 2.16 1.45 0.71 0.28 [0.19 1.26] 2.54 0.0189 2.9 

Table 6: Statistics on redundant target effects in Experiment 3, formatted as in Table 3. 
This table only reports performance on trials with 2 targets as compared to trials with 1 
target (trials with distractors are not included here). The degrees of freedom for the t-tests 
was 27 for the color and semantic tasks, and 25 for the lexical task.  

Differences between top and bottom sides: Correct RTs were on average 20, 32, 

and 25 ms faster for single targets at the top than bottom location in the color, lexical, and 

semantic tasks, respectively (SEMs = 5, 9 and 6 ms, all p<0.01, BF>14). Error rates were on 

average 2.8, 0.3, and 0.9% lower for single targets at the top location in those three tasks, 
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respectively (SEMs = 0.5, 0.4, and 0.3%, significant in the color and semantic tasks, ps<0.02, 

BFs>6).  

 

Discussion  

 The results of Experiment 3 were consistent with both prior experiments: there is 

a positive redundant target effect on response times only in the color task. One new result 

in this experiment was that the lexical task, as well as the semantic task, yielded a 

significantly negative redundant target effect (slowing of responses). These results again 

reject the standard serial model for the color task. The serial model can account for lexical 

and semantic task performance, as can some versions of fixed-capacity parallel models.   

In order to test the prediction of the standard serial model, focused on comparing 

two-target trials (set size 2) to single-target trials (set size 1). But as shown in Figure 9, for 

all three tasks, mean responses on two-target trials were faster (and more accurate) than 

responses on mixed-pair trials (with 1 target and 1 distractor). As explained in the 

Introduction, the standard serial model predicts this effect: on some mixed-pair trials, the 

non-target is processed first and then search continues to correctly respond to the target, 

with a slow response time. The parallel models also predict this effect. Thus, the mixed-

pair trials are not useful for distinguishing these models.   

 

Experiment 4: Forced-choice procedure with uncorrelated stimuli on the left and right 

 In Experiments 1-3, the words were positioned just above and below fixation. We 

made this choice to minimize the distances of all the letters from fixation and to match 

the design of Mullin & Egeth (1989). But English words are typically arranged 

horizontally. It is possible that parallel processing is strongest when words are presented 

in that standard arrangement.  

Accordingly, Experiment 4 used the same tasks and experimental design as 

Experiment 3, except the words were arranged horizontally, immediately to the left and 
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right of the point of fixation, with a single blank letter space between their inner letters. 

We also increased the difficulty of the color task by reducing the saturation of the colored 

letters. This addresses a concern that in the prior experiments the color task was easier 

than the other two tasks.   

 

Method  

Participants: Participants were recruited and compensated in the same way as in 

Experiment 1, via Prolific. See Table 1 for the counts of included and excluded 

participants.  

Stimuli and procedure: All details were the same as in Experiment 3, except as 

noted here. An example stimulus display from the color task is shown in Figure 10A. The 

words were placed to the left and/or right of fixation, centered on the horizontal midline. 

The empty space between the words was always one letter space in width.  There was no 

central fixation cross. Instead, the point of gaze fixation was marked with two thin black 

vertical lines centered on the screen’s vertical midline. The length of each bar was 8% of 

the total screen height. The top bar’s lower end was roughly in line with the top of the 

tallest letter, and the bottom bar’s upper end was the same distance from the horizontal 

midline.  Participants were instructed to fixate on the space between the two bars.  

We also made the color task more difficult than in the previous experiments by 

reducing the relative saturation of the color targets by more than half. On a scale from 0 

to 255, the RGB values of the red letters were (92, 59, 59), which corresponds to 36% 

saturation, relative to the maximum possible on the screen. The RGB values of the green 

letters were (61, 88, 61), which corresponds to 31% saturation. See an example colored 

word in Figure 10A.  
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Figure 10: (A) Example stimuli in Experiment 4, showing a gray word on the left and a 
colored word on the right (with lower saturation than in Experiments 1-3).  (B) and (C) 
Redundant target effects in Experiment 4. Format as in Figure 8. 

 

Results 

Response times: Figure 10B shows that the redundant target effects were 

consistent with the other three experiments, despite the change in stimulus positions. As 

detailed in Table 7, redundant targets improved responses in the color task (by 24 ms on 

average), but slowed responses in both the lexical task (-34 ms) and the semantic task (-

35 ms). The redundant target effect was significantly different in the color task as 

compared to the lexical task and to the semantic task (both F>26, p<10-6, BF>4000). The 

effects in the lexical and semantic tasks did not differ (F<0.001, p=0.98, BF=0.28). See the 

top row of Figure 11 for mean correct response times in each condition separately.  
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Figure 11. Mean performance in each task of Experiment 4. Format as in Figure 9. 

Accuracy: On average, collapsing across all conditions, participants achieved 82%, 

84%, and 88% correct in the color, lexical, and semantic tasks, respectively (SEMs = 2%, 

1% and 1%).  Thus, unlike in the previous three experiments, the color task was now the 

hardest of the three tasks, likely because the saturation of the colored letters was much 

lower. Figure 10C plots the positive effects of redundant targets on accuracy (fewer 

misses), which were significant in all three tasks (see Table 7 for a summary of target-

present trials). The effect on accuracy was significantly bigger in the color task than in the 

other two tasks (both F>12, p<0.001, BF>105), and did not differ between the lexical and 

semantic tasks (F=0.67, p=0.46, BF=0.29). The mean percentage errors in each condition 

are shown in the bottom row of Figure 11. As in Experiment 3, which also used an 

uncorrelated stimulus design with targets present on 75% of all trials, error rates were 

higher on trials with distractors than with targets.  
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Task 
1 Targ. 
Mean 

2 Targ. 
Mean 

Effect 
Mean 

Effect 
SEM 95% CI t p BF 

  Correct response time (ms) 
Color 558.7 534.9 23.9 5.3 [12 33] 4.38 0.0004 117 
Lexical 602.8 637.1 -34.3 4.8 [-43 -25] -7.05 6.5x10-7 73,980 
Semantic 629.1 664.1 -35.0 8.9 [-55 -19] -3.85 0.0011 45.6 
  Errors (percent) 
Color 15.34 3.51 11.83 1.55 [9.00 14.89] 7.48 1.4 x10-6 66,861 
Lexical 4.87 2.81 2.06 0.43 [1.23 2.90] 4.68 0.0003 308 
Semantic 4.65 2.85 1.80 0.56 [0.94 3.34] 3.17 0.0054 10.2 

Table 7: Statistics on redundant target effects in Experiment 4, formatted as in Table 6. 
This table only reports performance on trials with 2 targets as compared to trials with 1 
target (trials with distractors are not included here). The degrees of freedom for the t-tests 
was 21 for the color task and 25 for the lexical and semantic tasks.  

Differences between the left and right sides: Correct RTs were on average 38, 64, 

and 47 ms faster for single targets at the right than left location in the color, lexical, and 

semantic tasks, respectively (SEMs = 9, 8 and 8 ms, all p<0.001, BF>65). Error rates were 

on average 5, 3, and 2% lower for single targets at the right location in those three tasks, 

respectively (SEMs = 3, 1, and 1%). That effect was not significant in the color task (p=0.21, 

BF=0.57), but it was in the lexical and semantic tasks, ps<0.01, BFs>10). A right visual field 

advantage for word recognition has been observed many times (reviewed by Yeatman & 

White, 2021). 

 
Discussion  
 The results of Experiment 4, with horizontally arranged words, were qualitatively 

consistent with the results of Experiment 3. Both the lexical and semantic tasks produced 

negative redundant target effects, while the color task produced a positive redundant 

target effect despite now being the most difficult of the three tasks. We conclude that the 
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negative redundant target effects in Experiments 1-3 cannot be accounted for by the 

unnatural vertical arrangement of the words above and below fixation.     

 

General Discussion  

The four experiments reported above consistently demonstrate that there is a 

positive redundant target effect when the targets are defined by color but not when the 

targets are defined by lexicality or by semantic category. In all three tasks, the stimuli 

were written words presented singly or in pairs near fixation.  In the color task, the 

presence of a redundant target (a word written in colored letters) consistently sped 

responses compared to trials with a single target. In the semantic task, the presence of a 

redundant target (a word that refers to a living thing) significantly slowed responses in all 

of the experiments. In the lexical decision task, the redundant target had no significant 

effect in two experiments (with correlated stimuli), and a significantly negative effect in 

the third and fourth experiments (with uncorrelated stimuli).  

In this study, the color task served as a positive control condition to demonstrate 

the expected redundancy gain for a simple visual feature task. Indeed, the prior literature 

is dominated by reports of positive redundant target effects(Townsend, 1990; van der 

Heijden et al., 1983). The positive effects we found with the color task in all four 

experiments demonstrate that participants can attend to words at the chosen positions. 

What we highlight is the existence of a negative redundant target effect with nearly 

identical stimuli at the same positions, but when the task requires semantic categorization 

of the words’ meanings. Such a negative effect is quite rare and can be explained by our 

updated models that incorporate errors.  

In Experiments 1-3, the color task was overall easier (lower error rates) than the 

lexical and semantic tasks. But in Experiment 4, we reduced the salience of the color 

targets to make the color task the most difficult of the three. The positive redundant target 
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effect persisted. Thus, any differences in overall difficulty cannot explain the different 

results across tasks.  

 These data are all consistent with the hypothesis that the low-level features of 

multiple stimuli, such as their color, are processed in parallel with little cost, but there is 

a capacity limit for recognizing the meanings of multiple written words at once. The 

standard serial model predicts the negative redundant target effect for semantic 

judgements, as long as there are some errors in classifying targets, and thus cannot be 

rejected. Alternatively, some fixed-capacity parallel models can also account for the 

negative effect.  

Relation to previous redundant target studies of word recognition  

 In contrast to our key result, some prior studies have reported positive redundant 

target effects for word recognition. However, most of those experiments presented two 

copies of the same word on redundant target trials (Egeth et al., 1989; Hasbrooke & 

Chiarello, 1998; Mohr et al., 1994, 1996; Mullin & Egeth, 1989). The resulting redundant 

target effects might be explained by facilitation or coactivation at the stage of letter or 

syllable processing (as discussed in the “Interactive Processing” section below). The only 

study to report a positive redundant target effect that did not present identical pairs of 

words was by Shepherdson & Miller (2014). They found that semantic categorization 

judgments were faster for two targets than for a single target paired with a pronounceable 

non-word. This could be interpreted as a positive redundant target effect and evidence 

for parallel processing. However, the result can be explained by the standard serial model 

if we assume that on some one-word trials, the participant processes the non-word before 

they process the target. Therefore, we consider the strict test of our serial model to be the 

contrast between trials with two targets (which are two different words) and trials with 

a single target presented alone.  
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Thus far, all experiments that made this strict test of the serial model with word 

recognition tasks lead to the same result. They were conducted by us in the present study 

and by Mullin & Egeth (1989). The experiments in that prior study were like our 

Experiment 1: they presented words above and/or below fixation and used go/no-go 

target detection tasks in which targets were never presented with distractors (a correlated 

stimulus design). In two of their experiments, the words presented together on 

redundant-target trials were not identical (as in ours). In those experiments, they found 

that both lexical decision and semantic categorization judgments were slowed by the 

presence of a redundant target – but significantly so only in the lexical task.  

Based on these results, the authors rejected the standard, self-terminating, 

unlimited-capacity parallel processing model for recognizing two words, as do we. They 

raised several tentative explanations for the negative redundant target effect in the lexical 

task. On the one hand, they hypothesized some type of ‘interference’ between two words 

that are processed in parallel. This is similar to the newer ideas about orthographic 

interference that are discussed below. On the other hand, they argued that serial 

processing could explain the effects if both words were processed exhaustively, that is, if 

search was not self-terminating. But our model generalizations presented above make 

clear that the negative redundant effect is predicted by the standard self-terminating 

serial model as long as for errors in stimulus classification are taken into account.  

 We also go beyond previous studies by showing that the results are consistent 

whether the task requires a go/no-go response or a choice response, and whether targets 

can appear with distractors, and whether the words are presented above and below 

fixation or to the left and right.  The negative effect was always negative for the semantic 

task. For the lexical task it was never positive, and significantly negative in the two 

experiments that used the uncorrelated stimulus design.   
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Thus, considering both our data and Mullin & Egeth (1989), we can reject the 

standard self-terminating serial model for the color task, but not for the word recognition 

tasks (i.e., lexical decision and semantic categorization). In addition, we can reject the 

standard, self-terminating, unlimited-capacity parallel model for the word recognition 

tasks, but not for the color tasks. What we cannot do is reject the standard, self-

terminating fixed-capacity parallel model for the word recognition tasks. That does not 

mean that the fixed-capacity model is always viable. It can predict the wide range of 

redundant target effects, depending on its specific parameters and the nature of the 

evidence accumulation process (e.g., diffusion to bound or linear ballistic accumulation). 

More work is needed to test those assumptions and parameters.    

Relation to the wider literature on serial versus parallel word recognition   

 Two related questions have fueled many studies of visual word recognition and 

reading: (1) Can multiple words be recognized in parallel? (2) In natural reading, do 

readers process multiple words in parallel? Both questions have been heavily debated. 

The redundant target effects explored in the present article are one way to investigate the 

first question, but not the second. The goal is to investigate the fundamental processing 

limits of visual word recognition – are readers capable of recognizing two words in 

parallel, when they are forced to try? Several distinct paradigms have been used to 

answer that question.  

One such paradigm is the unspeeded dual-task paradigm that measures accuracy. 

It has provided evidence for a serial “bottleneck” in word recognition (White, Boynton, 

et al., 2019). In these experiments, participants were presented with two words at once. 

They were instructed either to respond to one pre-cued word (with focused attention) or 

to respond to both words in sequence (with divided attention). A key difference from the 

redundant target paradigm is that the two words must had to be judged independently, 
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rather than integrated to one decision. Also, the primary measure was accuracy rather 

than response time. These studies post-masked the words after a short interval calibrated 

to each individual’s performance in the single-task condition. Thus, each participant was 

given just enough time to process one word, and the question was whether they can 

process two words with divided attention in that same amount of time. Standard parallel 

and serial processing models make different predictions for the magnitude of the drop in 

accuracy in the divided attention condition.  

The results of several dual-task studies have been consistent with serial 

processing: the observer can recognize only one word per trial and must guess when 

asked about the other. That has been true for semantic categorization, lexical decision, 

and pronounceability judgments (Campbell et al., 2024; White et al., 2018, 2020; White, 

Palmer, et al., 2019). The large cost of dividing attention on accuracy in these experiments 

is consistent with a special case of the serial model in which only one word is processed. 

It rejects both the standard unlimited-capacity and the fixed-capacity parallel models. 

That measure alone cannot reject a more extreme limited-capacity parallel model. 

However, another result in these studies is a negative correlation between the two 

responses made within the same trial. The response to one stimulus was more likely to 

be correct when the response to the other stimulus was incorrect. This result is consistent 

with the standard serial model that processes just one of two words per trial, and rejects 

standard parallel models.  

A related paradigm is “partially-valid cueing,” in which one of two stimulus 

locations is pre-cued as more likely to be task-relevant. This paradigm was applied to 

semantic judgments of words that were post-masked to limit the possibility of serially 

processing two words per trial. For the cued (more likely) location, accuracy was near 

80% correct. For the uncued (less likely) location, accuracy was no better than chance 

(Johnson et al., 2022). This is again consistent with the version of the standard serial 
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model in which only one word can be processed (due to the time constraints that prevent 

switching). On the face of it, this result is inconsistent with any parallel model. To save 

the parallel model, one must assume a strategy of processing only one word at a time 

when one location is more likely to be relevant and time is limited; in other words, the 

parallel model becomes effectively serial.  

The redundant target paradigm complements the dual-task and partially-valid 

cueing paradigms because the words do not have to be post-masked, and the observer 

does not need to make independent judgements about two words simultaneously. 

Moreover, the effects on response time can be compared to specific quantitative models. 

Altogether, the results are consistent in that they cannot reject the standard serial model.  

 Not all studies agree. Of particular interest is the flanker paradigm (Eriksen & 

Eriksen, 1974) that investigates whether judgments of a foveated target stimulus are 

affected by task-irrelevant flanking stimuli. This paradigm has been applied to words 

with several different tasks, demonstrating effects of the congruency between a target 

word and flanking words. Responses to a target are faster if the flankers are congruent 

with the target in terms of semantic or syntactic categories than if they are incongruent 

(Snell, Declerck, et al., 2018; Snell, Mathôt, et al., 2018; Snell, Meeter, et al., 2017; Snell & 

Grainger, 2018), but see (Broadbent & Gathercole, 1990). That is true even when the whole 

display is flashed for only 50 ms and then masked (Snell, 2024). Such flanker congruency 

effects have been interpreted as evidence for parallel processing of both the relevant 

target word and the irrelevant flanker words (Snell & Grainger, 2019). 

In addition to these effects of higher order relations between words, the flanker 

paradigm provides evidence of sublexical orthographic effects. In particular, lexical 

decisions for a foveated target word are affected by non-word pairs of letters that flank it 

(Dare & Shillcock, 2013). Responses are faster when the flankers are bigrams that contain 
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similar letters as the target, compared to flankers that contain different letters (Grainger 

et al., 2014). That result supports a stage of parallel integration of orthographic 

information.  

Importantly, this interactive parallel processing might primarily be deleterious. 

The integration of orthographic (letter-level) information across words can cause 

interference. In the lexical decision task, performance is generally worse when there are 

flankers of any type than when the target is presented alone (Snell, 2024; Snell, Declerck, 

et al., 2018). Further evidence for interference caused by flanking irrelevant words comes 

from the 'visual world' eye-movement paradigm (Ziaka et al., 2025). Moreover, "letter 

migration errors" illustrate a mixing of information: when asked to report the identity of 

one word, readers sometimes report a word that could be formed by combining the 

target's letters with letters from a neighboring word (Fischer-Baum et al., 2011; Mozer, 

1983; Vandendaele et al., 2019). Facilitation (or at least, the absence of interference) may 

arise when a target word is flanked by a copy of itself (Snell & Grainger, 2018). Relatedly, 

in natural reading, fixation times on a target word are reduced if the next word over is an 

identical copy of it (Angele et al., 2013).  

It might be tempting to explain the dual-task results reviewed above in terms of a 

flanker effect. Some flanker experiments highlight interference by comparing responses 

to one target word presented alone vs. responses to one target presented with other 

irrelevant words. In contrast, in the dual-task experiments, two words are always 

presented and the key manipulation is whether only one of the words is task-relevant, or 

whether both words are task-relevant. Thus, it is not trivial to explain the dual-task costs 

in terms of flanker effects.  

 In sum, flanker effects and related phenomena are consistent with some degree of 

parallel processing, starting at the sub-lexical orthographic level, which might in some 

cases impair word recognition but in other cases allow for parallel lexical, syntactic or 
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semantic processing. In the next section, we consider whether an interactive parallel 

processing model could explain our redundant target effects.  

Coactivation and interactive parallel processing 

In the literature on visual search and redundant targets, “coactivation” models 

assume that initially separate channels, which carry information about multiple stimuli,  

are combined before making a decision (Miller, 1982). We have not considered these 

models in detail, because they were designed to predict relatively large positive 

redundant target effects, in contrast to the negative effects we found.  

Another class of models assume interactive parallel processing. One example of 

interactive processing is crosstalk: information about one stimulus affects the information 

that is represented about another stimulus. In essence, there is a failure of selectivity in 

the processing channels. In contrast,  the specific models we tested in this article all 

assume “selective influence”: each stimulus is processed in a selective channel, such that 

the specific properties (e.g., letters or semantic category) of one stimulus do not affect the 

processing another stimulus.  

Models with interactive processing might help explain our data and reconcile 

them with the flanker effect literature reviewed above. In fact, some authors have 

advanced a model of reading in which orthographic information is integrated across 

neighboring words into a "single channel" that then activates multiple word-level 

representations (Grainger et al., 2014, 2016; Snell, van Leipsig, et al., 2018). This idea has 

been proposed to explain the flanker effects reviewed above.    

Such an interactive parallel model, with orthographic integration and interference,  

might explain the negative redundant target effects in our lexical and semantic tasks. Two 

target stimuli would both activate a single channel of letter or bigram detectors. These 

letter units would then activate ‘word units’ that contain those letters. Because the two 

targets were always different from each other, many potential word units would be 
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activated, and possibly inhibit each other. The activation of words that contain a mixture 

of letters from both targets would especially cause interference and slow responses 

compared to when a single target is presented alone.  Thus, like some of our fixed-

capacity parallel models, this interactive model might predict a negative redundant 

target effect on response times.   

This model might also explain the positive redundant effects that arise when the 

two targets are identical words (Hasbrooke & Chiarello, 1998; Mohr et al., 1994; Mullin & 

Egeth, 1989). In the flanker task, responses to the target are not slowed by a single flanker 

immediately to the right of the target that is identical to the target (Snell & Grainger, 

2018). Both results are consistent with pre-lexical pooling of letter identities, which can 

be beneficial when neighboring words are identical.   

However, without more theoretical work, there are some difficulties in using an 

interactive parallel model to explain our redundant target effects. First without 

modifications, this model might predict a loss of accuracy on two-target trials. If 

something like ‘letter migrations’ were to occur (activations of words formed by mixing 

letters from the two targets; Mozer, 1983) a second target would introduce errors. In 

contrast, we always found that redundant targets increased accuracy, even when they 

slowed response times. The serial model can explain this benefit by having two chances 

to arrive at the correct decision (that a target was present).  

Second, arguments for parallel processing on the basis of flanker effects highlight 

both a general cost of such parallel processing, due to orthographic interference, and an 

ability to extract syntactic or semantic information from multiple words at once (Snell, 

2024; Snell & Grainger, 2019). In our experiments, that same type of parallel processing 

could have led to positive redundant target effects for the semantic task, which we did 

not find. It is possible, but not yet clear, that the negative effect might be explained by a 
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more complex mixture of orthographic interference and slowed but simultaneous 

semantic activations for both words (Snell, Vitu, et al., 2017).  

The third difficulty for the parallel interactive model concerns the effect of the 

words’ positions. Snell, Mathôt, et al. (2018) found strong flanker effects when the 

flankers were to the left and right of the target but not when they were above and below 

the target. In contrast, we found similar results for horizontal and vertical positions of the 

words. One explanation is that the parallel orthographic integration process occurs 

automatically across horizontally-arranged letter strings, but selective attention can more 

easily filter out irrelevant flankers that are above and below the target.  

Thus, a parallel model with orthographic interference, as developed from flanker 

effects, might be able to explain negative redundant target effects, but there are some 

issues to resolve first. For now, we leave it as a possible alternative hypothesis that 

deserves further investigation.  

Finally, let us briefly address one form of interactive processing that we do not 

believe is relevant to our findings: crowding. Crowding makes stimuli difficult to 

recognize when they are too close together, especially outside the fovea (Bouma, 1970; 

Pelli & Tillman, 2008). It applies to letters and many other types of stimuli. Crowding can 

be explained by an obligatory spatial pooling of the features of neighboring stimuli. The 

current experiments were designed to minimize this possibility by placing words on 

opposite sides of fixation. 

 

Contingencies between stimuli  

 The effect of redundant targets can be modulated by contingencies among stimuli 

and between stimuli and responses (Mordkoff & Yantis, 1991). For example, one important 

contingency is the probability of observing a target at one location given the presence of 

either a target, distractor, or no stimulus at the other location. Participants can quickly 
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learn contingencies and adapt to them strategically. Contingency learning has been 

widely studied and perhaps the most relevant to our study is the large body of work on 

color-word contingency learning in the Stroop paradigm (Macleod, 2019; Schmidt, 2021).  

Mordkoff and Yantis (1991) identified two kinds of contingency that can modulate 

the magnitude of the redundant target effect. One is the nontarget-response contingency 

that is not an issue in our experiments because it did not differ between set size 

conditions. We focus on the difference between two interstimulus contingencies: (i) the 

probability that one stimulus is a target given that the other location is blank. We denote 

this as p(TL1|BL2), where T means target, B means blank, and the subscripts L1, L2 denote 

the two locations. (ii) the probability that one stimulus is a target given that a target is 

present at the other location: p(TL1|TL2). If p(TL1|TL2) > p(TL1|BL2), then the contingency for 

the redundant target condition provides more information than the contingency for the 

single target condition. Mordkoff and Yantis (1991) demonstrated that such an imbalance 

in contingencies can increase the magnitude of the redundant target effect (by about 10 

ms). 

 The two designs used in our experiments had different patterns of contingencies 

(compare Tables 2 and 5).  In Experiments 1 and 2, p(TL1|BL2) = 0.5 and p(TL1|TL2) = 0.67. 

This favors a faster response for redundant targets compared to single targets.  In 

contrast, in Experiments 3 and 4, the difference in interstimulus contingencies was in the 

opposite direction: (TL1|BL2) = 0.75 and p(TL1|TL2) = 0.33. This favors a slower response for 

redundant targets compared to single targets. 

 Could these differences in interstimulus contingencies explain the negative 

redundant target effect we found for some tasks? We argue that they cannot, for two 

reasons: First, the interstimulus contingencies in Experiments 1 and 2 favored positive 

effects while in Experiments 3 and 4 they favored negative effects. Thus, they cannot have 

produced the negative effects found for the semantic task in all experiments. Second, the 

contingencies were the same for the color task and for the semantic task. Thus, they 
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cannot explain why the redundant target effect was reliably positive for the color task 

and negative for the semantic task. They might, however, explain why the redundant 

target effects for the lexical and semantic tasks were more robustly negative in 

Experiments 3–4 than in Experiments 1–2. In sum, while we have little doubt that 

contingencies can modulate the magnitude of redundant target effects, they cannot 

account for the negative effects we observed in the semantic tasks in all experiments.  

Relation to the mimicry of parallel and serial models 

 Given that parallel and serial models can sometimes mimic one another (Algom et 

al., 2015; Townsend & Ashby, 1983), some have concluded that distinguishing such models 

is impossible. This is a misunderstanding (Townsend, 1990). But the issues are not simple, 

and we make three related points. 

 First, there is no contradiction between the analysis of model mimicry in the 

literature and the distinctive predictions of the specific models presented here. The 

mimicry analysis involves more general models, which generally make weaker 

predictions than specific models. Moreover, the “standard” models we presented here 

are still general in the sense that they assume no particular stochastic process or 

distribution. They are not equivalent and can be distinguished.  Lastly, the prior models 

that mimic each other are specific in another sense: they are specific to variations of visual 

search tasks and do not apply to the larger variety of paradigms that have been used to 

investigate parallel processing of multiple words, such as dual tasks, partially valid 

cueing, and the flanker paradigm (reviewed above).  

 Second, we make progress by testing a specific hypothesis such as the standard 

serial model applied to word recognition. The strongest inferences in science come from 

rejecting a hypothesis. The challenge is that once a specific hypothesis is rejected, it is 

often possible to make additional assumptions to account for the data with a more 

complex version of the existing model. In fact, one way to think about model mimicry is 
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that it specifies an alternative hypothesis. Generating such alternative hypothesis is an 

important step in itself, but the never-ending sequence of alternative hypotheses can be 

disheartening. 

 Third, given the variety of different models of parallel and serial processing, we 

make progress by attacking the problem with a variety of tasks, stimuli, and 

measurements. The parallel vs. serial distinction for word recognition has been addressed 

in at least a half a dozen ways as reviewed above. In each case, a simple specific model 

(e.g. standard serial) might account for the data while the alternative specific model (e.g. 

standard unlimited-capacity parallel) requires some additional assumptions to remain 

viable. Parsimony favors the simpler model. But that by itself is not convincing. To reach 

consensus, one must repeat the argument over the entire set of relevant studies. If there 

is converging evidence over many domains consistent with a simpler model, then that 

model is preferred. In our opinion, the published data so far do not provide a convincing 

case for rejecting the standard serial model for written word recognition. 

Relation to previous theory on response time and accuracy  

Most previous work has followed one of two paths. One is to develop a pure 

response time theory that ignores errors (Townsend & Ashby, 1983; Townsend & Nozawa, 

1995). This work has also been general in not assuming particular stochastic processes or 

response time distributions. The second path is to assume a specific stochastic process 

such as the diffusion process or the linear ballistic accumulator (both described in the 

Appendix; see Luce (1991) for an introduction). For example, Blurton et al. (2014) built on 

the diffusion process to model the redundant target effect. The strength of this path is the 

integrated treatment of response time and accuracy.  

Here we sought to expand the general response time models to incorporate errors. 

The surprising result was that the standard, self-terminating, serial model with errors 
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showed a negative redundant target effect. This is not predicted by the corresponding 

pure response time model.  

This work complements other recent effects to generalize pure response time 

models. In particular, Little et al. (2022) extended part of the theory of systems factorial 

technology to include errors. They examined the prediction of the double-factorial 

paradigm to distinguish parallel and serial processes. They showed that the previous 

analysis of exhaustive search models was general to conditions with errors. However, 

they did not find a similar general result for self-terminating search models. Instead, they 

examined two special cases and showed that the analysis for pure response time did 

generalize to those cases. This is important progress, but it remains to be determined if 

this method of distinguishing parallel and serial models holds for all standard, self-

terminating models with errors.  

In summary, a critical development is the creation of general theories of both 

response time and accuracy. We have developed such a theory for the redundant target 

paradigm.  

 

Conclusion   

 This study makes two primary contributions: first, we generalized standard 

models of the redundant target effect, which yielded new predictions. These generalized 

models have several advantages: they are straightforward to implement and interpret; 

they do not assume any particular stochastic process or response time distribution, and 

they include errors while also modeling response time. The generalized standard, self-

terminating serial model predicts that redundant targets can slow correct responses, even 

when they increase accuracy. In contrast, the standard, self-terminating, unlimited-

capacity parallel model always predicts positive redundant target effects, even when 

allowing for errors. We also developed specific examples of standard, self-terminating, 
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fixed-capacity parallel models, some of which can predict negative redundant target 

effects. 

Second, we presented experimental tests of these predictions for judgements of 

words. When the task required judgment of the letter colors, a positive redundant target 

effect rejected the standard self-terminating serial model. This is the result most 

commonly observed in the redundant target literature. But when the task required 

judgments of the words’ meaning, a negative redundant target effect rejected the 

standard, self-terminating, unlimited-capacity parallel model and was instead consistent 

with either the standard self-terminating serial model or some variants of a fixed-capacity 

parallel model. This stands in contrast to most previous studies of word recognition that 

found positive redundant target effects and argued against the standard serial model. 

 In sum, this work demonstrates that negative redundant target effects do occur. 

They are consistent with some (but not all) fixed-capacity parallel models, or a standard 

serial model that can readily account for them. Thus, unlike for many other visual tasks, 

for word recognition the redundant target paradigm has not provided evidence against 

the standard serial model. 
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APPENDIX  

This appendix describes three closely matched models of the redundant target 

effect: one serial and two parallel.  These models start from the standard self-

terminating search models of response time (Townsend & Nozawa, 1995) and add an 

account of accuracy.  The main new result is that when there are errors, the standard 

self-terminating serial model predicts a slower response with two targets compared to 

one.  This contrasts with the corresponding self-terminating serial model without errors 

that predicts no effect on response time. Another new result concerns the prediction of 

the standard self-terminating, unlimited-capacity, parallel model with errors. It predicts 

that the response time for two targets is faster than for one target.  This is in accord with 

the corresponding parallel model without errors, although the effect is reduced with 

errors.  Finally, for the standard fixed-capacity, parallel model there are no general 

predictions.  Thus, among these landmark models, the redundant target paradigm can 

help distinguish serial and parallel processing. 

Task Description 

We focus on typical yes-no visual search tasks in which one or two stimuli are 

presented.  A stimulus can either be a target 𝑡 or a distractor 𝑑.  When the task has one 

stimulus, the possible stimuli are 𝑡 and 𝑑.  When the task has two stimuli, the possible 

stimuli are 𝑡𝑡, 𝑑𝑑 and	𝑡𝑑.  Thus, the entire set of possible stimuli is 𝑆 = {𝑡, 𝑑, 𝑡𝑡, 𝑑𝑑, 𝑡𝑑}.  
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The task is to respond “yes” to the presence of any target, and respond “no” to the 

absence of any target.   

There are four primary response measures of the redundant target task to be 

predicted that are subscripted by the stimulus condition: probability of a correct 

response 𝑝), the mean correct response time 𝜇),#$%%&#!, the standard deviation of the 

correct response time 𝜎),#$%%&#!, and the mean incorrect response time 𝜇),'(#$%%&#! for 𝑠 ∈

𝑆.  For example, for the single target condition 𝑡, these variables are denoted: 𝑝!, 

𝜇!,#$%%&#!, 𝜎!,#$%%&#! and 𝜇!,'(#$%%&#!.   

Standard Self-terminating Serial Model with Errors 

As with typical models of pure response time without errors, our serial model is 

based upon the selective influence of each stimulus on a separate process.  In other 

words, there is one stimulus-specific component process for each stimulus.  Each 

component process mediates the effect of one stimulus on both response time and 

accuracy.   

For each possible stimulus 𝑠 ∈ {𝑡, 𝑑} and associated component process, define a 

binary random variable for accuracy by 𝒁), which has a value of 1 if the decision is 

correct for that individual stimulus, and a value of 0 if incorrect.  In addition, denote the 

continuous random variables for the component processing time for a correct decision 

for stimulus 𝑠 by 𝑫),#$%%&#!, and for an incorrect decision by  𝑫),'(#$%%&#!.  We emphasize 
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that these decisions are about a single stimulus and not about the response made to the 

set of stimuli. 

As with similar models, assume that, besides the component processes, there are 

other “residual” processes that do not depend on the stimulus and do not affect 

accuracy, but contribute to the response time.  The processing time from these residual 

processes is denoted by a continuous random variable 𝑹 and it additively combines 

with the stimulus-specific component processes to yield the response time.  We allow 

this residual processing time to depend on the specific response regardless of the 

stimulus.  The random variable 𝑹*&) represents the residual processing time when the 

response is “yes” indicating the presence of a target, and 𝑹($ when the response is “no” 

indicating the absence of a target. 

As with standard models of response times without errors, we assume a strong 

degree of independence, termed context independence, between component processes for 

different stimuli.   Our definition has both an independent part (sometimes called 

stochastic independence) and an identical distribution part (sometimes called context 

invariance). 

The component accuracy to one stimulus is assumed to be independent of other 

stimuli in the same stimulus condition.  Consider a stimulus condition with two stimuli, 

denoted 𝑠+ and 𝑠,, with 𝑠+, 𝑠, ∈ {𝑡, 𝑑}. Under this assumption, the random variable for 

component accuracy to stimulus 𝑠+, 𝒁)!, is independent of the random variable for 
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component accuracy to stimulus 𝑠,, 𝒁)".   Furthermore, when 𝑠+ = 𝑠, (either both targets 

or both distractors), the component accuracies are identically distributed, that is, 𝒁)!is 

identically distributed to 𝒁)" (and identically distributed to either 𝒁! or 𝒁-). 

The component processing time for one stimulus is assumed to be independent 

of the component processing time of the other stimulus in the same stimulus condition. 

Specifically, for a stimulus condition with two stimuli 𝑠+ and 𝑠,, with 𝑠+, 𝑠, ∈ {𝑡, 𝑑}, 

under this assumption the pairs of component processing times are independent.  That 

is: 𝑫)!,#$%%&#! is independent of  𝑫)",#$%%&#!;   𝑫)!,#$%%&#! is independent of 𝑫)",'(#$%%&#!;  

𝑫)!,'(#$%%&#! is independent of  𝑫)",#$%%&#!;  and 𝑫)!,'(#$%%&#! is independent of 𝑫)",'(#$%%&#!.   

Furthermore, when 𝑠+ = 𝑠, (either both targets or both distractors), the component 

processing times are identically distributed, that is, 𝑫)!,#$%%&#! is identically distributed 

to 𝑫)",#$%%&#! (and identically distributed to either 𝑫!,#$%%&#! or 𝑫-,#$%%&#!), and 𝑫)!,'(#$%%&#! 

is identically distributed to 𝑫)",'(#$%%&#! (and identically distributed to either 𝑫!,'(#$%%&#! 

or 𝑫-,'(#$%%&#!). 

Additionally, the random variables 𝑹*&) and 𝑹($ are independent of other 

random variables.  For example, when there is a target and the response is “yes”, 𝑹*&) is 

independent of 𝑫!,#$%%&#!. 

Context independence, including the accuracy and component processing 

assumptions, subsumes the more specific independence assumptions of independence 

from set size (unlimited capacity), independence from processing order (in the serial 
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model), and independence from the early completion of other processes (in the parallel 

model).  For parallel models, we separate the unlimited-capacity assumption from 

context independence to allow consideration of limited capacity. 

Even with context independence, the accuracy and component time within a 

single component process are not constrained and can be dependent. This allows them 

to be generated by a wide range of stochastic processes.  For any 𝑠 ∈ {𝑡, 𝑑}, there is no 

restriction between 𝑫),#$%%&#! given a correct decision, and 𝑫),'(#$%%&#! given an incorrect 

decision.  This is because correct and incorrect component processing times can differ, 

and are represented by separate variables.  For example, the mean incorrect response 

time can be slower or faster than the mean correct response time. 

Predictions of the Standard Self-terminating Serial Model with Errors 

First consider stimulus conditions with either a single target 𝑡 or two targets 𝑡𝑡.  

Our goal is to describe the component processes of the two-stimulus conditions in terms 

of the component processes of a single stimulus. 

For a single target condition 𝑡, the predicted probability of a correct response is 

defined as  

 𝑝! = 𝑃(𝒁! = 1).     (1) 

The random variable for the correct response time to a target is, 

 𝑻!,#$%%&#! = 𝑫!,#$%%&#! + 𝑹*&). 
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The expected response time for a correct response to a single target is then the sum of 

the expected values of that 𝑫!,#$%%&#! and 𝑹*&), 

 𝜇!,#$%%&#! = E*𝑫!,#$%%&#!, + E*𝑹*&),.																																													(2)  

Relying on context independence, 𝑫!,#$%%&#! and 𝑹*&) are independent and therefore the 

variance of the response time of a correct response is the sum of the variances, 

 𝜎!,#$%%&#!, = Var*𝑫!,#$%%&#!, + Var*𝑹*&),.																																		(3)  

Similarly, the random variable for the incorrect response time to a target is, 

𝑻!,'(#$%%&#! = 𝑫!,'(#$%%&#! + 𝑹($													 

with expected value and variance as, 

 𝜇!,'(#$%%&#! = E[𝑫!,'(#$%%&#!] + E[𝑹($]  

 𝜎!,'(#$%%&#!, = Var[𝑫!,'(#$%%&#!] + Var[𝑹($].  

For the two-target condition 𝑡𝑡, consider three mutually exclusive cases that 

describe the possible processing sequences of this serial model: 

Case 1: One stimulus is processed first and is correct, and then processing is 

terminated (ignoring the other stimulus). 

Case 2: One stimulus is processed first and is incorrect, and then the other 

stimulus is processed correctly. 

Case 3: One stimulus is processed first and is incorrect, and then the other 

stimulus is processed and is also incorrect. 

The probabilities and response times follow by case. 
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Case 1: The probability that Case 1 occurs is equal to the probability that a single 

stimulus is processed correctly, because of context independence, 

𝑝!!,./)&+ = 𝑃(𝒁! = 1) = 𝑝! . 

The correct response time for Case 1 is the same as the response time for a correct 

response to a single target, also because of context independence, 

𝑻!!,./)&+ = 𝑫!,#$%%&#! + 𝑹*&). 

The expected correct response time for Case 1 is, 

𝜇!!,./)&+ = 𝐸[𝑫!,#$%%&#!] + 𝐸[𝑹*&)]. 

Due to context independence, the variance of the correct response time for Case 1 is, 

 𝜎!!,./)&+, = Var[𝑫!,#$%%&#!] + Var[𝑹*&)].  

Case 2: The probability that Case 2 occurs is equal to the probability that one 

stimulus is processed first and is incorrect, and that the other stimulus is processed 

correctly.  Let 𝑡0'%)! denote the target processed first, and 𝑡)&#$(- denote the target 

processed second.  By context independence, the probability of Case 2 can be expressed 

in terms of single stimulus probabilities, 

𝑝!!,./)&, = 𝑃 M𝒁!#$%&' = 0	and	𝒁!&()*+, = 1O = (1 − 𝑝!)𝑝! .	 

The correct response time for Case 2, also relying on context independence, is the 

processing time for an incorrect response to one stimulus plus the processing time for a 

correct response to the other stimulus, 

𝑻!!,./)&, = 𝑫!,'(#$%%&#! +𝑫!,#$%%&#! + 𝑹*&). 
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The expected correct response time for Case 2 is, 

𝜇!!,./)&, = 𝐸[𝑫!,'(#$%%&#!] + 𝐸[𝑫!,#$%%&#!] + 𝐸[𝑹*&)]. 

The variance of the correct response time for Case 2, relying on context independence, 

is, 

                                      𝜎!!,./)&,, = Var*𝑫!,'(#$%%&#!, + Var*𝑫!,#$%%&#!, + Var*𝑹*&),.  

 

Case 3: The probability that Case 3 occurs in the serial model is equal to the 

probability that both stimuli are processed incorrectly.  By context independence,  

𝑝!!,./)&1 = 𝑃(𝒁! = 0	and	𝒁! = 0) = (1 − 𝑝!),. 

The incorrect response time for Case 3 in the serial model is the processing time 

for an incorrect response to one stimulus plus the processing time for an incorrect 

response to the other stimulus, 

𝑻!!,./)&1 = 2	𝑫!,'(#$%%&#! + 𝑹($ . 

The expected incorrect response time for Case 3 is, 

𝜇!!,./)&1 = 2𝐸[𝑫!,'(#$%%&#!] + 𝐸[𝑹($]. 

The variance of the incorrect response time for Case 3 is, 

𝜎!!,./)&1, = 2	Var*𝑫!,'(#$%%&#!, + Var[𝑹($]. 

In the two-target condition, a correct response is achieved in Case 1 and in Case 2, 

resulting in a mixture distribution (see (Chatfield & Theobald, 1973).  The probability of a 

correct response is the probability of Case 1 plus the probability of Case 2, because they 

are mutually exclusive, 
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𝑝!! = 𝑝!!,./)&+ + 𝑝!!,./)&, 

= 𝑝! + (1 − 𝑝!)𝑝! 

																																																													= 2	𝑝! − 𝑝!,.																																																																	(4) 

The expected response time for a correct response to a two-target condition, 𝜇!!,#$%%&#!, is 

the weighted average of the expected response times for Case 1 and Case 2.  The weight 

for Case 1 is the proportion of correct responses for Case 1, i.e., the ratio of the 

probability of Case 1 to the probability of Case 1 or Case 2, 

𝑤./)&+ =
𝑝!!,./)&+

R𝑝!!,./)&+ + 𝑝!!,./)&,S
=

𝑝!
(2𝑝! − 𝑝!,)

=
1

(2 − 𝑝!)
. 

Similarly, 

𝑤./)&, =
𝑝!!,./)&,

R𝑝!!,./)&+ + 𝑝!!,./)&,S
=
𝑝!(1 − 𝑝!)	
(2𝑝! − 𝑝!,)

=
(1 − 𝑝!)
(2 − 𝑝!)

	. 

Using these weights, the expected correct response time is, 

𝜇!!,#$%%&#! = 𝑤./)&+𝐸[𝑻!!,./)&+] + 𝑤./)&,𝐸[𝑻!!,./)&,]																																																																									 

							= 𝑤./)&+𝜇!!,./)&+ +𝑤./)&,	𝜇!!,./)&,																																																																									 

													= .
1

2 − 𝑝!
0𝐸[𝑫!,#$%%&#! + 𝑹*&)] + .

1 − 𝑝!
2 − 𝑝!

0𝐸[𝑫!,'(#$%%&#! +𝑫!,#$%%&#! + 𝑹*&)] 

																					= 𝐸[𝑫!,#$%%&#!] +		 M
+23'
,23'

O𝐸[𝑫!,'(#$%%&#!] + 𝐸[𝑹*&)].																																																	(5) 

The variance of the correct response time for a mixture is the sum of two parts: 

the first part is the weighted averages of the variances of each case, and the second part 

is the variance due to the differences in the means of the cases. This is called the law of 

total variance (Chatman and Theobald, 1973), and yields, 
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𝜎!!,#$%%&#!, = 𝑤./)&+𝜎!!,./)&+, +𝑤./)&,	𝜎!!,./)&,, + 𝜎!!,56&/(),  

where 

𝜎!!,56&/(), = 𝑤./)&+𝜇!!,./)&+, +𝑤./)&,	𝜇!!,./)&,, − 𝜇!!,#$%%&#!, . 

The first part, the weighted averages of the variances of each case, can be expanded as 

𝑤./)&+𝜎!!,./)&+, +𝑤./)&,	𝜎!!,./)&,,

= .
1

2 − 𝑝!
0 RVar[𝑫!,#$%%&#!] + Var[𝑹*&)]S

+ .
1 − 𝑝!
2 − 𝑝!

0 RVar*𝑫!,#$%%&#!, + Var[𝑫!,'(#$%%&#!] + Var[𝑹*&)]S

= Var*𝑫!,#$%%&#!, + Var*𝑹*&), + .
1 − 𝑝!
2 − 𝑝!

0 Var*𝑫!,'(#$%%&#!,.																(6) 

The second part, the variance due to the differences in the means of the cases, is always 

non-negative, that is, 𝑤./)&+𝜇!!,./)&+, +𝑤./)&,	𝜇!!,./)&,, − 𝜇!!,#$%%&#!, ≥ 0. 

To obtain the expected incorrect response time, one can use the results for Case 3 

because that is the only case that results in an incorrect response, 

𝜇!!,'(#$%%&#! = 𝐸[𝑻!!,./)&1] = 2𝐸[𝑫!,'(#$%%&#!] + 𝐸[𝑹($]. 

The variance of the incorrect response time is the same as that for Case 3, 

𝜎!!,'(#$%%&#!, = 2	Var*𝑫!,'(#$%%&#!, + Var[𝑹($]. 

Our main focus is on the difference between the correct response time for one 

target and the correct response time for two targets.  The difference is constructed so 

that a faster response time to two targets results in a positive difference.  Using 

Equations (2) and (5), the difference is,  
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𝜇!,#$%%&#! − 𝜇!!,#$%%&#! = R𝐸*𝑫!,#$%%&#!, + 𝐸*𝑹*&),S																																																											 

																																																		−	.𝐸[𝑫!,#$%%&#!] +		.
1 − 𝑝!
2 − 𝑝!

0𝐸[𝑫!,'(#$%%&#!] + 𝐸[𝑹*&)]0 

																																													= −.
1 − 𝑝!
2 − 𝑝!

0 𝐸[𝑫!,'(#$%%&#!].																																																							(7) 

This difference is less than or equal to zero.  When there are no errors (𝑝! = 1), the 

correct response times are equal and difference equals zero.  Thus, this serial model 

predicts, in the presence of errors, that a correct response time for two targets is slower 

than the correct response time for one target. 

We also investigate the difference between the variance associated with a correct 

response time for one target and the variance associated with a correct response time for 

two targets.   Using Equations (3) and (6), the difference is, 

𝜎!,#$%%&#!, − 𝜎!!,#$%%&#!,

= Var*𝑫!,#$%%&#!, + Var*𝑹*&),

− .Var*𝑫!,#$%%&#!, + Var*𝑹*&), + .
1 − 𝑝!
2 − 𝑝!

0Var*𝑫!,'(#$%%&#!,0 												

− 𝜎!!,56&/(),  

= −.
1 − 𝑝!
2 − 𝑝!

0Var*𝑫!,'(#$%%&#!, − 𝜎!!,56&/(), 																 

which is less than or equal to zero.  Thus, the serial model predicts, in the presence of 

errors, that the variance of a correct response time for two targets is larger than that for 

one target. See the final section of the Appendix for simulations of this effect on 

response time variability, and an explanation for why it is difficult to measure.  
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Next consider the difference between the probability of a correct response for 

two targets and the probability of a correct response for one target.  The difference is 

constructed so that an increase in accuracy for two targets results in a positive 

difference.  Using Equations (1) and (4), the difference is,  

																																	𝑝!! − 𝑝! =	(2	𝑝! − 𝑝!,) − 𝑝! = 𝑝! − 𝑝!,																																										(8) 

which is greater than or equal to zero.  Thus, redundant targets improve accuracy. 

 For completeness, the other predictions of this serial model are given next. 

For a single distractor condition 𝑑, by definition,  

𝑝- = 𝑃(𝒁- = 1), 

𝑻-,#$%%&#! = 𝑫-,#$%%&#! + 𝑹($ ,	and 

𝑻-,'(#$%%&#! = 𝑫-,'(#$%%&#! + 𝑹*&). 

The expected values and variances are, 

 𝜇-,#$%%&#! = E*𝑫-,#$%%&#!, + E[𝑹($],  

𝜎-,#$%%&#!, = Var*𝑫-,#$%%&#!, + Var[𝑹($], 

 𝜇-,'(#$%%&#! = E*𝑫-,'(#$%%&#!, + E*𝑹*&),,	and  

𝜎-,'(#$%%&#!, = Var[𝑫-,'(#$%%&#!] + Var[𝑹*&)]. 

For the two-distractor condition 𝑑𝑑, there are three cases. The first case is when 

both distractors are processed correctly,  

𝑝--,./)&+ = 𝑃(𝒁- = 1	𝑎𝑛𝑑	𝒁- = 1) = 𝑝-,,	and 

𝑻--,./)&+ = 2𝑫-,#$%%&#! + 𝑹($ , 

with 
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 𝜇--,./)&+ = 2	E*𝑫-,#$%%&#!, + E[𝑹($],  

𝜎--,./)&+, = 2	Var*𝑫-,#$%%&#!, + Var[𝑹($]. 

The second case is when one distractor is processed incorrectly, which terminates 

processing, 

𝑝--,./)&, = 𝑃(𝒁- = 0) = 1 − 𝑝- , and 

𝑻--,./)&, = 𝑫-,'(#$%%&#! + 𝑹*&), 

with 

 𝜇--,./)&, = E*𝑫-,'(#$%%&#!, + E*𝑹*&),,  

𝜎--,./)&,, = Var*𝑫-,'(#$%%&#!, + Var*𝑹*&),. 

 

The third case is when one distractor is processed correctly but the second distractor is 

processed incorrectly, 

𝑝--,./)&1 = 𝑃(𝒁- = 1	𝑎𝑛𝑑	𝒁- = 0) = 𝑝-(1 − 𝑝-), and 

𝑻--,./)&1 = 𝑫-,#$%%&#! +𝑫-,'(#$%%&#! + 𝑹*&), 

with 

𝜇--,./)&1 = E*𝑫-,#$%%&#!, + E*𝑫-,'(#$%%&#!, + E*𝑹*&),, 

𝜎--,./)&1, = Var*𝑫-,#$%%&#!, + Var*𝑫-,'(#$%%&#!, + Var*𝑹*&),. 

Only the first case yields a correct response, thus 

𝑝-- = 𝑝--,./)&+ = 𝑝-,, and	 

𝑻--,#$%%&#! = 2𝑫-,#$%%&#! + 𝑹($ . 

The expected value and variance for a correct response is 
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 𝜇--,#$%%&#! = 2	E*𝑫-,#$%%&#!, + E[𝑹($],  

𝜎--,#$%%&#!, = 2	Var*𝑫-,#$%%&#!, + Var[𝑹($]. 

The other two cases yield incorrect responses, yielding a mixture distribution. The 

weight for Case 2 is the fraction of incorrect responses due to Case 2 relative to all 

incorrect responses, 

𝑤./)&, =
(1 − 𝑝-)

R(1 − 𝑝-) + 𝑝-(1 − 𝑝-)S
=

1
1 + 𝑝-

	.	 

Similarly, the fraction of incorrect responses due to Case 3 relative to all incorrect 

responses is, 

𝑤./)&1 =
𝑝-(1 − 𝑝-)

R(1 − 𝑝-) + 𝑝-(1 − 𝑝-)S
=

𝑝-
1 + 𝑝-

	. 

The weighted combination of Cases 2 and 3 yields the expected incorrect response time, 

𝜇--,'(#$%%&#! = 𝑤789:,𝐸[𝑻--,./)&,] + 𝑤789:1𝐸[𝑻--,./)&1]																																																																							 

		= .
1

1 + 𝑝-
0 R𝐸[𝑫-,'(#$%%&#!] + 𝐸[𝑹*&)]S

+ .
𝑝-

1 + 𝑝-
0 R𝐸[𝑫-,#$%%&#!] + 𝐸[𝑫-,'(#$%%&#!] + 𝐸[𝑹*&)]S 

																			= E[𝑫-,'(#$%%&#!] + .
𝑝-

1 + 𝑝-
0 𝐸[𝑫-,#$%%&#!] + 𝐸[𝑹*&)].																																													 

The variance of the incorrect response time for the mixture of Cases 2 and 3 is, 

𝜎--,'(#$%%&#!, = (𝑤./)&,𝜎--,./)&,, +𝑤./)&1	𝜎--,./)&1, )

+ R𝑤./)&,𝜇--,./)&,, +𝑤./)&1	𝜇--,./)&1, − 𝜇--,'(#$%%&#!, S. 

For the one target and one distractor condition 𝑡𝑑, there are six mutually 

exclusive cases. The cases are distinguished by whether the target is processed first 



 82 

(Cases 1, 2, and 3), or the distractor is processed first (Cases 4, 5, and 6). Which stimuli is 

processed first is considered to be random (typically with probability of 0.5).  The first 

case is that the target is processed first and is correct,  

𝑝!-,./)&+ = 𝑝! , 

𝑻!-,./)&+ = 𝑫!,#$%%&#! + 𝑹*&), 

with  

𝜇!-,./)&+ = E*𝑫!,#$%%&#!, + E*𝑹*&),, 

𝜎!-,./)&+, = Var*𝑫!,#$%%&#!, + Var*𝑹*&),. 

The second case is that the target is processed first incorrectly and then the distractor is 

processed correctly,  

𝑝!-,./)&, = (1 − 𝑝!)𝑝- 

𝑻!-,./)&, = 𝑫!,'(#$%%&#! +𝑫-,#$%%&#! + 𝑹($ , 

with 

𝜇!-,./)&, = E*𝑫!,'(#$%%&#!, + E*𝑫-,#$%%&#!, + E[𝑹($], 

𝜎!-,./)&,, = Var*𝑫!,'(#$%%&#!, + Var*𝑫-,#$%%&#!, + Var[𝑹($]. 

The third case is that the target is processed first incorrectly and then the distractor is 

processed incorrectly,  

𝑝!-,./)&1 = (1 − 𝑝!)(1 − 𝑝-), 

𝑻!-,./)&1 = 𝑫!,'(#$%%&#! +𝑫-,'(#$%%&#! + 𝑹*&), 

with 

𝜇!-,./)&1 = E*𝑫!,'(#$%%&#!, + E*𝑫-,'(#$%%&#!, + E*𝑹*&),, 
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𝜎!-,./)&1, = Var*𝑫!,'(#$%%&#!, + Var*𝑫-,'(#$%%&#!, + Var*𝑹*&),. 

The fourth case is that the distractor is processed first incorrectly, which terminates 

processing,  

𝑝!-,./)&; = (1 − 𝑝-), 

𝑻!-,./)&; = 𝑫-,'(#$%%&#! + 𝑹*&), 

with 

 𝜇!-,./)&; = E*𝑫-,'(#$%%&#!, + E*𝑹*&),,  

𝜎!-,./)&;, = Var*𝑫-,'(#$%%&#!, + Var*𝑹*&),. 

The fifth case is that the distractor is processed first correctly and then the target is 

processed correctly,  

𝑝!-,./)&< = 𝑝-𝑝! , 

𝑻!-,./)&< = 𝑫-,#$%%&#! +𝑫!,#$%%&#! + 𝑹*&), 

with 

𝜇!-,./)&< = E*𝑫-,#$%%&#!, + E*𝑫!,#$%%&#!, + E*𝑹*&),, 

𝜎!-,./)&<, = Var*𝑫-,#$%%&#!, + Var*𝑫!,#$%%&#!, + Var*𝑹*&),. 

The sixth case is that the distractor is processed first correctly and then the target is 

processed incorrectly,  

𝑝!-,./)&= = 𝑝-(1 − 𝑝!), 

𝑻!-,./)&= = 𝑫-,#$%%&#! +𝑫!,'(#$%%&#! + 𝑹($ , 

with 

𝜇!-,./)&= = E*𝑫-,#$%%&#!, + E*𝑫!,'(#$%%&#!, + E[𝑹($], 
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𝜎!-,./)&=, = Var*𝑫-,#$%%&#!, + Var*𝑫!,'(#$%%&#!, + Var[𝑹($]. 

The probability of a correct response is achieved through the mutually exclusive cases 1, 

3, 4 and 5.  Specifically, it is the probability that the target is processed first (denoted 

𝑝tfirst) and results in Case 1 or Case 3, plus the probability that the distractor is 

processed first (1 − 𝑝tfirst) and results in Case 4 or Case 5,  

𝑝!- = 𝑝tfirst(𝑝! + (1 − 𝑝!)(1 − 𝑝-)) + (1 − 𝑝>?@A9>)((1 − 𝑝-) + 𝑝!𝑝-) 

= 1 − 𝑝- + 𝑝!𝑝- .																																																														 

For the four cases that contribute to a correct response, the weights are  

𝑤+ =
𝑝tfirst	𝑝!-,./)&+

𝑝!-
=

𝑝tfirst	𝑝!
(1 − 𝑝- + 𝑝!𝑝-)

	,								 

𝑤1 =
𝑝tfirst	𝑝!-,./)&1

𝑝!-
=
𝑝tfirst	(1 − 𝑝!)(1 − 𝑝-)
(1 − 𝑝- + 𝑝!𝑝-)

	, 

𝑤; =
(1 − 𝑝>?@A9>)	𝑝!-,./)&;

𝑝!-
=
(1 − 𝑝>?@A9>)	(1 − 𝑝-)
(1 − 𝑝- + 𝑝!𝑝-)

	,								 

𝑤< =
(1 − 𝑝>?@A9>)	𝑝!-,./)&<

𝑝!-
=
(1 − 𝑝>?@A9>)	𝑝!𝑝-
(1 − 𝑝- + 𝑝!𝑝-)

	.							 

Using these weights, the expected correct response time is, 

𝜇!-,#$%%&#! = 𝑤+E*𝑻!-,./)&+, + 𝑤1E*𝑻!-,./)&1, + 𝑤;E*𝑻!-,./)&;, + 𝑤<E*𝑻!-,./)&<,																							 

=
𝑝>?@A9>	𝑝!

(1 − 𝑝- + 𝑝!𝑝-)
RE[𝑫!,#$%%&#!] + E[𝑹*&)]S

+	
𝑝>?@A9>	(1 − 𝑝!)(1 − 𝑝-)

(1 − 𝑝- + 𝑝!𝑝-)
RE[𝑫!,'(#$%%&#!] + E[𝑫-,'(#$%%&#!] + E[𝑹*&)]S

+
(1 − 𝑝>?@A9>)	(1 − 𝑝-)
(1 − 𝑝- + 𝑝!𝑝-)

RE[𝑫-,'(#$%%&#!] + E[𝑹*&)]S 	

+	
(1 − 𝑝>?@A9>)	𝑝!𝑝-
(1 − 𝑝- + 𝑝!𝑝-)

RE[𝑫-,#$%%&#!] + E[𝑫!,#$%%&#!] + E[𝑹*&)]S 
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=
𝑝!𝑝- + 𝑝>?@A9>	𝑝!(1 − 𝑝-)

(1 − 𝑝- + 𝑝!𝑝-)
E*𝑫!,#$%%&#!, +	

𝑝>?@A9>	(1 − 𝑝!)(1 − 𝑝-)
(1 − 𝑝- + 𝑝!𝑝-)

E*𝑫!,'(#$%%&#!, 														

+
(1 − 𝑝>?@A9>)	𝑝!𝑝-
(1 − 𝑝- + 𝑝!𝑝-)

E[𝑫-,#$%%&#!] 	

+ 	
(1 − 𝑝-) + 𝑝>?@A9>	(−𝑝! + 𝑝!𝑝-)

(1 − 𝑝- + 𝑝!𝑝-)
E[𝑫-,'(#$%%&#!] + E[𝑹*&)]. 

The variance of the correct response time as a mixture of Cases 1, 3, 4, and 5 is, 

𝜎!-,#$%%&#!, = (𝑤+𝜎!-,./)&+, +𝑤1𝜎!-,./)&1, +𝑤;𝜎!-,./)&;, +𝑤<𝜎!-,./)&<, )

+ R𝑤+𝜇!-,./)&+, +𝑤1𝜇!-,./)&1, +𝑤;𝜇!-,./)&;, +𝑤<𝜇!-,./)&<, − 𝜇!-,#$%%&#!, S. 

Similarly, the expected incorrect response time is due to Cases 2 and 6.  The weights are  

𝑤, =
𝑝>?@A9>	𝑝!-,./)&,
(1 − 𝑝!-)

=
𝑝>?@A9>	(1 − 𝑝!)𝑝-
	𝑝-(1 − 𝑝!)

= 𝑝>?@A9>,								 

𝑤= =
(1 − 𝑝>?@A9>)	𝑝!-,./)&=

(1 − 𝑝!-)
=
(1 − 𝑝>?@A9>)	𝑝-(1 − 𝑝!)

𝑝-(1 − 𝑝!)
= (1 − 𝑝>?@A9>). 

Using these weights, the expected incorrect response time is, 

𝜇!-,'(#$%%&#! = 𝑤,𝐸*𝑻!-,./)&,, + 𝑤=𝐸*𝑻!-,./)&=,	

																							= 𝑝>?@A9>R𝐸[𝑫!,'(#$%%&#!] + 𝐸[𝑫-,#$%%&#!] + 𝐸[𝑹($]S	

																													+(1 − 𝑝>?@A9>)R𝐸[𝑫-,#$%%&#!] + 𝐸[𝑫!,'(#$%%&#!] + 𝐸[𝑹($]S										 

= 𝐸*𝑫!,'(#$%%&#!, + 𝐸*𝑫-,#$%%&#!, + 𝐸[𝑹($].																	 

The variance of the incorrect response time as a mixture of Cases 2 and 6 is, 

𝜎!-,'(#$%%&#!, = (𝑤,𝜎!-,./)&,, +𝑤=𝜎!-,./)&=, ) + R𝑤,𝜇!-,./)&,, +𝑤=𝜇!-,./)&=, − 𝜇!-,'(#$%%&#!, S. 

Standard Self-terminating, Unlimited-capacity, Parallel Model with Errors 

 We generalize the standard self-terminating, unlimited-capacity, parallel model 

without errors to include errors, and ask whether the introduction of errors changes its 
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predictions.  In the literature, the parallel model without errors predicts that the correct 

response time for two targets is faster than for one target.  We examine this prediction 

when including errors in our generalized parallel model.  The task description 

discussed in the first section is the same, and the notation is the same as introduced for 

the Standard Self-terminating Serial Model with Errors.  The difference from the serial 

model is that, instead of component processes being executed sequentially, in the 

parallel model the component processes are executed in parallel.  As with the serial 

model, context independence is assumed with a strong degree of independence 

between the component processes for different stimuli.   

Predictions of the Standard Self-terminating, Unlimited-capacity, Parallel Model with 

Errors 

Consider stimulus conditions with either a single target 𝑡 or two targets 𝑡𝑡.  As 

before, our goal is to describe the processes of the two-stimulus conditions in terms of 

the single-stimulus component processes.  For a single target, the parallel model has the 

same definition and corresponding prediction as the serial model.   

For a single target condition 𝑡, the predicted probability of a correct response is  

 𝑝! = 𝑃(𝒁! = 1). (9) 

The random variable for the correct response time to a target is, 

 𝑻!,#$%%&#! = 𝑫!,#$%%&#! + 𝑹*&). 
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The expected response time for a correct response to a single target is then the sum of 

the expected values of that 𝑫!,#$%%&#! and 𝑹*&), 

 𝜇!,#$%%&#! = E*𝑫!,#$%%&#!, + E*𝑹*&),.																																													(10)  

The variance of the response time of a correct response is, 

 𝜎!,#$%%&#!, = Var*𝑫!,#$%%&#!, + Var*𝑹*&),.																																		(11)  

Similarly, the random variable for the incorrect response time to a target is, 

𝑻!,'(#$%%&#! = 𝑫!,'(#$%%&#! + 𝑹($													 

with expected value as, 

 𝜇!,'(#$%%&#! = E*𝑫!,'(#$%%&#!, + E[𝑹($].  

For the two-target condition 𝑡𝑡, consider three mutually exclusive cases that 

describe the possible processing sequences of the parallel model: 

Case 1: Each stimulus is processed correctly in parallel.  The response is reported 

as soon as a target is detected whichever process is completed first, and 

then processing is terminated, even though the other stimulus is partially 

processed. 

Case 2: One stimulus is processed correctly, and the other stimulus is processed 

incorrectly.  The response is reported when the stimulus that is processed 

correctly completes processing, regardless of whether the other stimulus 

has completed processing or is partially processed. 
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Case 3: Each stimulus is processed incorrectly. The response is reported after 

both stimuli have been processed. 

The probabilities and response times follow by case. 

Case 1: The probability that Case 1 occurs is equal to the probability that both 

stimuli are processed correctly.  Using the independence of component accuracy of one 

stimulus (𝑡+) to the other (𝑡,), the probability that Case 1 occurs is, 

𝑝!!,./)&+ = 𝑃R𝒁!! = 1, 𝒁!" = 1S = 𝑝!,. 

The correct response time for Case 1 is the processing time for the stimulus that was 

completed first plus the residual time, also because of context independence, 

𝑻!!,./)&+ = min	{𝑫!!,#$%%&#! , 𝑫!",#$%%&#!} + 𝑹*&). 

The expected correct response time for Case 1 is, 

𝜇!!,./)&+ = E[min	{𝑫!!,#$%%&#! , 𝑫!",#$%%&#!}] + E[𝑹*&)] 

and the variance is 

𝜎,!!,./)&+ = Var*min4𝑫!!,#$%%&#! , 𝑫!",#$%%&#!6, + Var*𝑹*&),.																				(12) 

Case 2: The probability that Case 2 occurs is equal to the probability that one 

stimulus is processed correctly and that the other stimulus is processed incorrectly. By 

context independence, the probability that Case 2 occurs can be expressed in terms of 

single stimulus probabilities, 

𝑝!!,./)&, = 𝑃R𝒁!! = 0	and	𝒁!" = 1,  or  𝒁!! = 1	and	𝒁!" = 0S = 2(1 − 𝑝!)𝑝! .	 
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The correct response time for Case 2 is the time that one stimulus is processed correctly, 

regardless of whether the other stimulus has completed processing or is partially 

processed. The response has to wait until the correct response has completed 

processing, no matter whether the incorrect component processing time is greater or 

less than the correct component processing time. Again, by context independence, the 

correct response time for Case 2 is, 

𝑻!!,./)&, = 𝑫!,#$%%&#! + 𝑹*&). 

The expected correct response time for Case 2 is, 

𝜇!!,./)&, = 𝐸[𝑫!,#$%%&#!] + 𝐸[𝑹*&)] 

and the variance is 

𝜎!!,./)&,, = Var[𝑫!,#$%%&#!] + Var*𝑹*&),.																				(13) 

Case 3: The probability that Case 3 occurs in the parallel model is equal to the 

probability that both stimuli are processed incorrectly.  By context independence,  

𝑝!!,./)&1 = 𝑃R𝒁!! = 0	and	𝒁!" = 0S = (1 − 𝑝!),. 

The incorrect response time for Case 3 in the parallel model is the longest processing 

time for an incorrect response plus the residual time, 

𝑻!!,./)&1 = max	{𝑫!!,'(#$%%&#! , 𝑫!",'(#$%%&#!} + 𝑹($ . 

The expected incorrect response time for Case 3 is, 

𝜇!!,./)&1 = 𝐸[max	{𝑫!!,'(#$%%&#! , 𝑫!",'(#$%%&#!}] + 𝐸[𝑹($]. 
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In the two-target condition, a correct response is achieved in Case 1 and in Case 2, 

resulting in a mixture distribution.  The probability of a correct response is the 

probability of Case 1 plus the probability of Case 2, because they are mutually 

exclusive, 

𝑝!! = 𝑝!!,./)&+ + 𝑝!!,./)&, 

							= 𝑝!𝑝! + 2(1 − 𝑝!)𝑝! 

																																																													= 2	𝑝! − 𝑝!,.																																																																	(14) 

The expected response time for a correct response to a two-target condition, 𝜇!!,#$%%&#!, is 

the weighted average of the expected response times for Case 1 and Case 2.  The weight 

for Case 1 is the proportion of correct responses for Case 1, i.e., the ratio of the 

probability of Case 1 to the probability of Case 1 or Case 2, 

𝑤./)&+ =
𝑝!!,./)&+

R𝑝!!,./)&+ + 𝑝!!,./)&,S
=

𝑝!𝑝!
(2𝑝! − 𝑝!,)

=
𝑝!

(2 − 𝑝!)
. 

Similarly, 

𝑤./)&, =
𝑝!!,./)&,

R𝑝!!,./)&+ + 𝑝!!,./)&,S
=
2𝑝!(1 − 𝑝!)	
(2𝑝! − 𝑝!,)

=
2(1 − 𝑝!)
(2 − 𝑝!)

	. 

Using these weights, the expected correct response time is, 

𝜇!!,#$%%&#! = 𝑤./)&+𝐸[𝑻!!,./)&+] + 𝑤./)&,𝐸[𝑻!!,./)&,]																																																																													 

= 𝑤./)&+𝜇!!,./)&+ +𝑤./)&,	𝜇!!,./)&,																																																																																																			 

= .
𝑝!

2 − 𝑝!
0 R𝐸*min4𝑫!!,#$%%&#! , 𝑫!",#$%%&#!6, + 𝐸*𝑹*&),S

+ Z
2(1 − 𝑝!)
(2 − 𝑝!)

[ R𝐸*𝑫!,#$%%&#!, + 𝐸*𝑹*&),S																																																																						 
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= .
𝑝!

2 − 𝑝!
0𝐸[min	{𝑫!!,#$%%&#! , 𝑫!",#$%%&#!}] +		Z

2(1 − 𝑝!)
(2 − 𝑝!)

[𝐸[𝑫!,#$%%&#!] + 𝐸[𝑹*&)].									(15)	 

The variance for the correct response time is 

𝜎!!,#$%%&#!, = 𝑤./)&+R𝑉𝑎𝑟*min4𝑫!!,#$%%&#! , 𝑫!",#$%%&#!6, + 𝑉𝑎𝑟*𝑹*&),S

+ 𝑤./)&,R𝑉𝑎𝑟[𝑫!,#$%%&#!] + 𝑉𝑎𝑟[𝑹*&)]	S + 𝜎!!,56&/(), 																									(16) 

where 

𝜎!!,56&/(), = 𝑤./)&+𝜇!!,./)&+, +𝑤./)&,	𝜇!!,./)&,, − 𝜇!!,#$%%&#!, . 

The incorrect response time is given by Case 3 alone. The expected incorrect response 

time is, 

𝜇!!,'(#$%%&#! = 𝐸[max	{𝑫!!,'(#$%%&#! , 𝑫!",'(#$%%&#!}] + 𝐸[𝑹($]. 

Our main focus is on the difference between the expected correct response time 

for one target and the expected correct response time for two targets.  The difference is 

constructed so that a faster response time to two targets results in a positive difference.  

Using Equations (10) and (15), the difference is,  

𝜇!,#$%%&#! − 𝜇!!,#$%%&#!

= R𝐸*𝑫!,#$%%&#!, + 𝐸*𝑹*&),S 	

− _.
𝑝!

2 − 𝑝!
0𝐸*min4𝑫!!,#$%%&#! , 𝑫!",#$%%&#!6, + Z

2(1 − 𝑝!)
(2 − 𝑝!)

[ 𝐸*𝑫!,#$%%&#!,

+ 𝐸*𝑹*&),` 

= Z
2 − 𝑝! − 2(1 − 𝑝!)

2 − 𝑝!
[𝐸*𝑫!,#$%%&#!, − .

𝑝!
2 − 𝑝!

0𝐸*min4𝑫!!,#$%%&#! , 𝑫!",#$%%&#!6, 
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= .
	𝑝!

2 − 𝑝!
0 R𝐸*𝑫!,#$%%&#!, − 𝐸*min4𝑫!!,#$%%&#! , 𝑫!",#$%%&#!6,S.									(17) 

The difference is positive, since 𝐸*𝑫!,#$%%&#!, ≥ 𝐸*min4𝑫!!,#$%%&#! , 𝑫!",#$%%&#!6,.	 Thus, this 

parallel model predicts that a correct response time for two targets is faster than the 

correct response time for one target. 

We also investigate the difference between the variance associated with a correct 

response time for one target and the variance associated with a correct response time for 

two targets.   Using Equations (11) and (16), the difference is, 

𝜎!,#$%%&#!, − 𝜎!!,#$%%&#!,

= Var*𝑫!,#$%%&#!, + Var*𝑹*&),

− R𝑤./)&+R𝑉𝑎𝑟*min4𝑫!!,#$%%&#! , 𝑫!",#$%%&#!6, + 𝑉𝑎𝑟*𝑹*&),S

+ 𝑤./)&,R𝑉𝑎𝑟*𝑫!,#$%%&#!, + 𝑉𝑎𝑟*𝑹*&),S + 𝜎!!,56&/(), S. 

Notice that 𝑤./)&+ +𝑤./)&, = 1, and Var*𝑫!,#$%%&#!, − 𝑤./)&,Var*𝑫!,#$%%&#!, =

𝑤./)&+Var*𝑫!,#$%%&#!,, so this reduces to 

𝜎!,#$%%&#!, − 𝜎!!,#$%%&#!,

= 𝑤./)&+RVar*𝑫!,#$%%&#!, − Var*min4𝑫!!,#$%%&#! , 𝑫!",#$%%&#!6,S − 𝜎!!,56&/()
, . 

 The difference of the component variances in the first two terms is positive while 

the value of −𝜎!!,56&/(),  is negative.  Our evaluation of specific models finds the 

difference in variance is positive but we do not have a proof that this is always the case.  

Thus, it is common that the one target condition has a larger variance than the two 

target condition, but it might not be universal. 
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Next consider the difference between the probability of a correct response for 

two targets and the probability of a correct response for one target.  The difference is 

constructed so that an increase in accuracy for two targets results in a positive 

difference.  Using Equations (9) and (14), the difference is,  

																																	(2	𝑝! − 𝑝!,) − 𝑝! = 𝑝! − 𝑝!,																																										(18) 

which is greater than or equal to zero because 𝑝! ≥ 𝑝!,.  Thus, redundant targets 

improve accuracy. 

 For completeness, the other predictions of this parallel model are given next. 

For a single distractor condition 𝑑, by definition,  

𝑝- = 𝑃(𝒁- = 1), 

𝑻-,#$%%&#! = 𝑫-,#$%%&#! + 𝑹($ ,	and 

𝑻-,'(#$%%&#! = 𝑫-,'(#$%%&#! + 𝑹*&). 

The expected values are, 

 𝜇-,#$%%&#! = E*𝑫-,#$%%&#!, + E[𝑹($],  

𝜇-,'(#$%%&#! = E*𝑫-,'(#$%%&#!, + E*𝑹*&),. 

For the two-distractor condition 𝑑𝑑, there are three cases. The first case is when 

both distractors are processed correctly, in parallel.  For this case, the response time is 

determined by the last component process completed.  The probability that Case 1 

occurs is,  

𝑝--,./)&+ = 𝑃(𝒁- = 1	𝑎𝑛𝑑	𝒁- = 1) = 𝑝-,. 

The correct processing time for Case 1 is, 
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𝑻--,./)&+ = max	{𝑫-!,#$%%&#! , 𝑫-",#$%%&#!} + 𝑹($ , 

with 

𝜇--,./)&+ = E*max	{𝑫-!,#$%%&#! , 𝑫-",#$%%&#!}, + E[𝑹($]. 

The second case is when one distractor is processed incorrectly and the other distractor 

is processed correctly, in which case the processing is terminated when the distractor is 

processed incorrectly.  The probability that Case 2 occurs is, 

𝑝--,./)&, = 𝑃R𝒁-! = 0	and	𝒁-" = 1	or 𝒁-! = 1	and	𝒁-" = 0S = 2𝑝-(1 − 𝑝-). 

The incorrect processing time for Case 2 is, 

𝑻--,./)&, = 𝑫-,'(#$%%&#! + 𝑹*&), 

with 

 𝜇--,./)&, = E*𝑫-,'(#$%%&#!, + E*𝑹*&),. 

The third case is when both distractors are processed incorrectly.  In this case, the 

response time is determined by the fastest of the two component processes.  The 

probability that Case 3 occurs is, 

𝑝--,./)&1 = 𝑃R𝒁-! = 0	and	𝒁-" = 0S = (1 − 𝑝-),. 

The incorrect processing time for Case 3 is, 

𝑻--,./)&1 = min	{𝑫-!,'(#$%%&#! , 𝑫-",'(#$%%&#!} + 𝑹*&), 

with 

𝜇--,./)&1 = E*min	{𝑫-!,'(#$%%&#! , 𝑫-",'(#$%%&#!}, + E*𝑹*&),. 

Only the first case yields a correct response, thus 

𝑝-- = 𝑝--,./)&+ = 𝑝-,, and	 
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𝑻--,./)&+ = max	{𝑫-!,#$%%&#! , 𝑫-",#$%%&#!} + 𝑹($ , 

with 

𝜇--,./)&+ = E*max	{𝑫-!,#$%%&#! , 𝑫-",#$%%&#!}, + E[𝑹($]. 

The other two cases yield incorrect responses, yielding a mixture distribution. The 

weight for Case 2 is the fraction of incorrect responses due to Case 2 relative to all 

incorrect responses, 

𝑤./)&, =
2𝑝-(1 − 𝑝-)

(2𝑝-(1 − 𝑝-) + (1 − 𝑝-),)
=

2𝑝-
1 + 𝑝-

	.	 

Similarly, the fraction of incorrect responses due to Case 3 relative to all incorrect 

responses is, 

𝑤./)&1 =
(1 − 𝑝-),

(2𝑝-(1 − 𝑝-) + (1 − 𝑝-),)
=
1 − 𝑝-
1 + 𝑝-

	. 

The weighted combination of Cases 2 and 3 yields the expected incorrect response time, 

𝜇--,'(#$%%&#! = 𝑤789:,𝐸[𝑻--,./)&,] + 𝑤789:1𝐸[𝑻--,./)&1]																																																																	 

= .
2𝑝-
1 + 𝑝-

0 RE*𝑫-,'(#$%%&#!, + E*𝑹*&),S

+ .
1 − 𝑝-
1 + 𝑝-

0 RE*min	{𝑫-!,'(#$%%&#! , 𝑫-",'(#$%%&#!}, + E*𝑹*&),S																										 

= .
2𝑝-
1 + 𝑝-

0 RE*𝑫-,'(#$%%&#!,S + .
1 − 𝑝-
1 + 𝑝-

0 RE*min	{𝑫-!,'(#$%%&#! , 𝑫-",'(#$%%&#!},S + E*𝑹*&),. 

For the one target and one distractor condition 𝑡𝑑, there are four mutually 

exclusive cases. The cases are distinguished by whether the target is processed correctly 

or incorrectly, coupled with whether the distractor is processed correctly or incorrectly. 
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The first case is that the target is processed correctly and the distractor is processed 

correctly. Here, only the processing of the target determines the response time. The 

probability that Case 1 occurs is,  

𝑝!-,./)&+ = 𝑝!𝑝- 

𝑻!-,./)&+ = 𝑫!,#$%%&#! + 𝑹*&), 

with  

𝜇!-,./)&+ = E*𝑫!,#$%%&#!, + E*𝑹*&),. 

The second case is that the target is processed correctly and the distractor is processed 

incorrectly. Now, there is a race between the two processing times. The probability that 

Case 2 occurs is,  

𝑝!-,./)&, = 𝑝!(1 − 𝑝-), 

𝑻!-,./)&, = min	{𝑫!,#$%%&#! , 𝑫-,'(#$%%&#!} + 𝑹*&), 

with 

𝜇!-,./)&, = E*min4𝑫!,#$%%&#! , 𝑫-,'(#$%%&#!6, + E*𝑹*&),. 

The third case is that the target is processed incorrectly and the distractor is processed 

correctly.  Now both processes must complete to determine a response.  The probability 

that Case 3 occurs is, 

𝑝!-,./)&1 = (1 − 𝑝!)𝑝- , 

𝑻!-,./)&1 = max	{𝑫!,'(#$%%&#! , 𝑫-,#$%%&#!} + 𝑹($ , 

with 

𝜇!-,./)&1 = E*max	{𝑫!,'(#$%%&#! , 𝑫-,#$%%&#!}, + E[𝑹($]. 
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The fourth case is that the target is processed incorrectly, and the distractor is processed 

incorrectly.  Here, the distractor processing determines the response time.  The 

probability that Case 4 occurs is, 

𝑝!-,./)&; = (1 − 𝑝!)(1 − 𝑝-), 

𝑻!-,./)&; = 𝑫-,'(#$%%&#! + 𝑹*&), 

with 

 𝜇!-,./)&; = E*𝑫-,'(#$%%&#!, + E*𝑹*&),.  

The probability of a correct response is achieved through the mutually exclusive cases 1, 

2, and 4.  It is the probability that the target is processed correctly, as in Case 1 or Case 

2, plus the probability that the distractor is processed incorrectly as in Case 4,  

𝑝!- = 𝑝!𝑝- + 𝑝!(1 − 𝑝-) + (1 − 𝑝!)(1 − 𝑝-) 

= 1 − 𝑝-(1 − 𝑝!). 

For the three cases that contribute to a correct response, the weights are  

𝑤+ =
𝑝!-,./)&+
𝑝!-

=
	𝑝!𝑝-

(1 − 𝑝-(1 − 𝑝!))
	,								 

𝑤, =
𝑝!-,./)&,
𝑝!-

=
𝑝!(1 − 𝑝-)

(1 − 𝑝-(1 − 𝑝!))
	, 

𝑤; =
𝑝!-,./)&;
𝑝!-

=
(1 − 𝑝!)(1 − 𝑝-)
(1 − 𝑝-(1 − 𝑝!))

	.								 

Using these weights, the expected correct response time is, 

𝜇!-,#$%%&#! = 𝑤+𝐸*𝑻!-,./)&+, + 𝑤,𝐸*𝑻!-,./)&,, + 𝑤;𝐸*𝑻!-,./)&;,																							 

which does not simplify nicely. 

The expected incorrect response time is solely due to Case 3, and is, 
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𝜇!-,./)&1 = E*max	{𝑫!,'(#$%%&#! , 𝑫-,#$%%&#!}, + E[𝑹($]. 

The standard self-terminating, unlimited-capacity, parallel model with errors 

does not allow quantitative predictions, as in the corresponding serial model.  The 

minimum and maximum terms prevent such specific quantitative predictions.  

Nevertheless, one can make the qualitative prediction that the response time is always 

reduced with two targets compared to one. 

Standard Self-terminating, Fixed-capacity, Parallel Model with Errors 

We next consider a fixed-capacity version of our standard self-terminating, 

parallel model with errors.  The term fixed capacity is from information theory (Taylor et 

al., 1967) and means that a constant amount of information is processed from the entire 

set of stimuli. Thus, assuming equal allocation, half as much information can be 

extracted from each of two stimuli as can be extracted from one stimulus alone.  This 

idea can be implemented using a sampling process described by (Shaw, 1980).  Such a 

fixed-capacity model is a special case of a limited-capacity model.  The fixed-capacity 

parallel model provides a useful landmark among the wide range of possible limited-

capacity models (White et al., 2018). 

Our goal in analyzing this model is to determine if it predicts that redundant 

targets have faster response time than single targets, such as found for our unlimited-

capacity parallel model.  Alternatively, capacity limits might overwhelm the 
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redundancy gain and result in slower response times as found for our serial model.  

Establishing this prediction helps distinguish serial and parallel models in general.   

One can start from the parallel model described in the preceding section by 

replacing the unlimited-capacity assumption with fixed capacity.  Unfortunately, we 

know of no way to analyze such a distribution-free model. Instead, we define two 

special cases of the fixed-capacity model and derive numerical predictions.  To 

foreshadow the results, the two versions have quite different predictions. 

Version 1: Simple diffusion processes. 

To begin, assume all of the model structure of the previous unlimited-capacity 

parallel model and add a specific stochastic process that generates the responses and 

response times.  In this version, we use a simple diffusion process that has often been 

applied to response time (Palmer et al., 2005) and has been elaborated as a theory of 

visual search (Corbett & Smith, 2020). 

Consider 𝑛 stimuli, where each stimulus can be a target 𝑡 or a distractor 𝑑.  For 

the current task, a diffusion process applied to response time describes the continuous 

accumulation of relative evidence for the presence of the target 𝑡	versus the presence of 

a distractor 𝑑.  Let the accumulated evidence for stimulus 𝑖, 𝑖 = 1,… , 𝑛, correspond to a 

random variable that varies over time 𝑼'(𝑥) where 𝑥 is time.  At time zero, 𝑼'(0) = 0.  

As time increases, evidence is accumulated from a target at a mean rate 𝑟! and from a 

distractor at a mean rate −𝑟-.  (For the details of representing evidence as a signal-to-
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noise ratio, see Palmer, et al., 2005).  The change for the fixed-capacity model is that the 

rate for this model is reduced by a factor of 1/√2 relative to an unlimited-capacity 

model.  This is the result of the rate being determined by a set of independent samples 

that are equally allocated when there are multiple stimuli (Shaw, 1980).  With two 

stimuli, half as many samples can be allocated, as to a single stimulus.  This results in 

twice the variability, or √2 the standard deviation of the estimate of the stimulus 

information.  This scales the effect of the stimulus by 1/√2.  For example, if 𝑟! and 𝑟- are 

2.0 for the unlimited capacity model, they would be 1.41 for the fixed-capacity model. 

The response occurs by evaluating the accumulated evidence for each stimulus.  

Starting at time zero, all stimuli are unlabeled, and as time increases, the evidence is 

evaluated to label the stimuli with a positive or negative decision, as follows. 

• At time step x, for unlabelled stimuli, evaluate 𝑼'(𝑥): 

o If 𝑼'(𝑥) > 𝑎, then label stimulus 𝑖	with a positive decision, and terminate with 

a “yes” response.  

o If 𝑼'(𝑥) < −𝑏, then label stimulus 𝑖	with a negative decision, and continue. 

• If all stimuli are labeled with a negative decision, terminate with a “no” response.  

Otherwise, increment the time step and repeat. 

 To complete the definition of the fixed-capacity diffusion model, we fix the 

coefficient of variability of the residual time to 0.1.  This value for the coefficient of 

variability is motivated by the idea that the residual processes are stereotyped and have 
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a relatively low variance.  In contrast, the component processing time from the diffusion 

process typically has a much larger coefficient of variability of around 0.8 to 1.0.  The 

variability of the total response time is the sum of the variability of the residual time 

and the component processing time.  The coefficient of variability for the total response 

time found in perceptual tasks varies from 0.1 for strong stimuli (dominated by the 

residual time) to 0.5 for weak stimuli (contributions from both residual time and 

component processing time).  While useful for specifying the models, this residual time 

parameter has no effect on the redundant target effect. 

 To calculate the predictions of this model, we first choose parameter values 

relative to Experiment 2 semantic condition.  To do this, the experiment is summarized 

by the mean percent correct, mean correct response time, and standard deviation for the 

correct response times for the single target and single distractor conditions.  This gives 

six statistics describing the data that are listed in Table A1.  In this table, the values for 

accuracy and mean response time have been reported in the body of the paper.  Here 

we also add the value for the standard deviation of response time calculated as the 

mean of the standard deviation for each participant.  It is sometimes useful to restate 

these values in terms of the coefficient of variation (standard deviation/mean).  For 

targets, the coefficient of variation was 0.26 for Experiment 2 and was 0.30 for 

Experiment 3.  These values are typical for response time tasks with relatively difficult 
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discriminations (Luce, 1986, p 64-66, and p 208-211).  These estimates of variability are 

important to constrain specific models of response time. 

Table A1 

Properties used to determine model parameters 

 Experiment 2 Experiment 3 

Single Targets   

Percent correct 90.8% 97.8% 

Mean response time 665 ms 641 ms 

Standard deviation of 

response time 

172 ms 190 ms 

Single Distractors   

Percent correct 93.9% 82.6% 

Mean response time 693 ms 806 ms 

Standard deviation of 

response time 

183 ms 207 ms 

 

The six model parameters are estimated from the six statistics.  The estimated 

parameter values are listed in Table A2.  Importantly, all of this is done with just the 

single stimulus condition in Experiment 2.  Finally, using these parameters, we calculate 

the predicted effects of two targets compared to a single target.  For this experiment, 
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this fixed-capacity model predicts that two targets are faster and more accurate than a 

single target (gain of 28 ms and 6.2% correct). 

 

Table A2 

Parameters for the Diffusion Model 

Parameter Symbol Experiment 2 

Values 

Experiment 3 

Values 

rate for a target 𝑟! 2.33 1.92 

rate for a distractor 𝑟- 1.98 2.24 

upper bound 𝑎 0.672 0.338 

lower bound  −𝑏 0.504 0.931 

mean residual time 

for a “yes” 

response 

𝐸[𝑹*&)] 0.418 0.458 

mean residual time 

for a “no” response 

E[𝑹($] 0.478 0.461 

 

 Next consider parameters based on the data from Experiment 3 semantic 

condition.  As above, we use six statistics from Table A1 to determine the six parameter 

values.  The estimated parameters are given in Table A2.  For these conditions, this 
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fixed-capacity model also predicts that two targets are faster and more accurate than 

one (gain of 59 ms and 1.9% correct).  Thus, these conditions also yield positive 

redundant target effects.  Indeed, for all conditions that avoid extreme parameters, the 

redundant target effect remains positive for this version of the model. 

 We also examined the effect of redundant targets on the standard deviation of 

response time. For Experiment 2, the predicted standard deviation was smaller for two 

targets (0.161 s) compared to one target (0.172 s). For Experiment 3, the predicted 

standard deviation was smaller for two targets (0.134 s) compared to one target (0.190 

s). Thus, for this version of the fixed-capacity model there was no sign of a larger 

standard deviation for the two-target condition compared to the one target condition. 

 In summary, we evaluated a version of the fixed-capacity parallel model that 

depends on a simple diffusion process.  For all conditions expected in a typical 

experiment, the fixed-capacity parallel model predicts a positive effect of redundant 

targets.  Thus, the predictions of this version of a fixed-capacity parallel model are 

distinct from the predictions of negative redundant target effects made by our standard 

self-terminating serial model. 

Version 2: Linear ballistic accumulators. 

A different model of response time is the linear ballistic accumulator (LBA) 

model (Brown and Heathcote, 2008).  It differs from the simple diffusion model in 

several ways.  First, the stochastic element is variability in the rate of accumulation from 
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trial to trial, instead of from moment to moment.  Second, there are separate 

accumulators for each response, instead of comparing positive and negative evidence 

within a single accumulator.  Third, there is a “bias” contribution to the rate of 

accumulating evidence for each accumulator, instead of separate bounds for the net 

positive and negative evidence.  We implemented a particularly simple version of this 

model.  The variability of the rate parameter was described by a Gamma distribution 

(Terry et al., 2015) to avoid the complications of negative rates that occurred in the 

original formulation arising from using a Gaussian distribution.  In addition, we 

dropped variability in the start point.  Finally, the predictions from the redundant target 

conditions were implemented following the derivation in (Eidels et al., 2010).  

For this model, the accumulated evidence for a “yes” or “no” response is in 

separate accumulators, denoted 𝑌 or 𝑁, respectively.  Such a pair of accumulators exists 

for each stimulus 𝑖, 𝑖 = 1,… , 𝑛.  The accumulated evidence for stimulus 𝑖 corresponds to 

two random variables, denoted 𝑼B$(𝑥) and 𝑼C$(𝑥), where 𝑥 is time. At time zero, 

𝑼B$(0) = 0 and 𝑼C$(0) = 0.  Evidence is accumulated for a target at a rate of 𝑟!B and 𝑟!C 

for each 𝑌 and 𝑁 accumulator, respectively. Similarly, evidence is accumulated for a 

distractor at a rate of 𝑟-B and 𝑟-C for each 𝑌 and 𝑁 accumulator, respectively.  These 

rates can be interpreted in terms of signal component and bias component.  Let the 

signal for a target be 𝑟!,)'D(/E = 	𝑟!B − 𝑟!C and the bias for a target be 𝑟!,F'/) =		 𝑟!C.  
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Similarly, let the signal for a distractor be 𝑟-,)'D(/E = 	𝑟-C − 𝑟-B and the bias for a 

distractor be 𝑟-,F'/) =		 𝑟-B.  

This separation of signal and bias components is needed to introduce the idea of 

fixed capacity.  The signal rates determine the accuracy of the response.  For example, if 

𝑟!,)'D(/E = 0, the responses on the target trials are at chance.  To incorporate fixed 

capacity, the signal rates are reduced by a factor of 1/√2 , just as was done in the 

diffusion model. 

Two additional parameters for this model are: a common bound for all 

accumulators 𝑏, and a common standard deviation for the variability of all rate 

parameters 𝑟GH. These two parameters and all of the rate parameters share a common 

factor, so one can fix one of these parameters. Hence, we set 𝑟GH = 1, which is equivalent 

to making all of these parameters relative to the standard deviation of the rate (see 

Palmer, et al., 2005).  In addition, to further reduce the number of parameters, we set the 

bound 𝑏 = 1. This is possible because the 𝑟!,F'/) and 𝑟-,F'/)  parameters act in a similar 

way to having separate bound for both accumulators. 

A response occurs when the evidence in any “yes” accumulator 𝑼B$(𝑥) reaches 

the bound for a “yes” response, or all of the “no” accumulators reach the bound for a 

“no” response.  Starting at time zero, all stimuli are unlabeled, and as time increases, the 

evidence is evaluated to label each stimulus with a positive or negative decision, as 

follows. 
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• At time step 𝑥, for unlabelled stimuli, evaluate 𝑼B$(𝑥): and 𝑼C$(𝑥): 

o If 𝑼B$(𝑥) > 𝑏, then label stimulus 𝑖	with a positive decision, and terminate 

with a “yes” response.  

o If 𝑼C$(𝑥) > 𝑏, then label stimulus 𝑖	with a negative decision, and continue. 

• If all stimuli are labeled with a negative decision, terminate with a “no” response.  

Otherwise, increment the time step and repeat. 

Finally, to complete the model, we add two residual time parameters: the mean 

of the residual time for a “yes” response 𝐸[𝑹*&)] and the mean of the residual time for a 

“no” response 𝐸[𝑹($].  Together, there are six parameters and they are listed in Table 

A3. 
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Table A3 

 Parameters for the LBA Model 

Parameter Symbol Experiment 2 

Values 

Experiment 3 

Values 

signal rate for a 

target 

𝑟!,)'D(/E 2.11 1.45 

signal rate for a 

distractor 

𝑟-,)'D(/E 1.76 2.23 

bias rate for a target 𝑟!,F'/) 0.593 1.23 

bias rate for a 

distractor 

𝑟-,F'/) 0.925 0.187 

mean residual time 

for a “yes” 

response 

𝐸[𝑹*&)] 0.251 0.209 

mean residual time 

for a “no” response 

E[𝑹($] 0.269 0.351 

 

 As with the diffusion model, we numerically solve for these parameters based on 

six statistics from the single target and single distractor conditions of our experiments 

given in Table A1.  The values of these six parameters are listed in Table A3.  From 
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these parameters, the predicted redundant target effects were calculated.  For 

Experiment 2 semantic condition, there was a negative redundant target effect of -1 ms 

on response time, and a positive 8.0% effect on accuracy.  For Experiment 3 semantic 

condition, there was a negative redundant target effect of −40 ms on response time, and 

a positive 2.1% effect on accuracy. The important new result is that this model can 

predict a negative redundant target effect. 

 Regarding the standard deviation of the response times, there are similar results.  

For Experiment 2, the predicted standard deviation is smaller for two targets (0.162 s) 

compared to one target (0.172 s).  For Experiment 3, the predicted standard deviation is 

larger for two targets (0.213 s) compared to one target (0.190 s).  Thus, this model can 

predict both possible effects on the standard deviation of response time. 

 Why do these two versions of the fixed-capacity, parallel model differ regarding 

the sign of the redundant target effect?  We suspect an important factor is the degree of 

variability in the component processing time for each stimulus.  For the diffusion 

model, this variability is quite high, with a coefficient of variability of the component 

time around 1.0.  In contrast, for the linear ballistic accumulator model, the variability is 

determined by the set of parameters.  For Experiment 3, the coefficient of variability of 

the component time for the selected parameters was only 0.25.  Such lower variability 

results in a smaller redundant target effect that can be overcome by the increase in 

processing time due to fixed capacity.  This results in a negative redundant target effect. 
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Summary 

We have presented two version of the standard self-terminating, fixed-capacity, 

parallel model with errors. One is based on a diffusion process and the other based on 

the linear ballistic accumulator.  For parameters based on the single stimulus conditions 

of Experiment 3 with the semantic task, these models make quite different predictions 

about the redundant target effect on response time: one positive and the other negative. 

Thus, this general class of model makes no prediction about whether the redundant 

target effect for response time is positive or negative. 

Details about Calculating Predictions of Redundant Target Effects  

In the introduction of the article, Figure 2 shows typical range of predictions of 

redundant target effects on mean correct response time for our three landmark models.  

Here, we describe the details of how we made these predictions. 

The predictions for the standard serial model are relatively simple to calculate, 

based on Equation (7).  The only factors affecting the predictions are the mean 

component processing time for errors on target trials (misses), and the proportion of 

correct responses for a single target.  For all predictions and all models, we kept the 

mean correct response time fixed at 600 ms and percent errors at 5%. To set the mean 

component processing time for errors, we also assumed a mean residual time of 200 ms.  

Then, for the upper end of the range, we assumed equal component processing time for 

correct (hit) and error (misses) responses.  For the lower end of the range, the mean 
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component processing time for errors was assumed to be twice as long as the mean 

component processing time for correct responses.  These predictions span the range 

expected in a typical experiment.   

For our standard unlimited-capacity, parallel model, there are no direct 

numerical predictions from Equation (17).  Instead, we rely on the two special cases we 

have already developed: the diffusion model and the linear ballistic accumulator model.  

For the upper end of the range, we used the diffusion model with parameters that for 

the single stimulus trials yield 5% errors, a mean response time of 600 ms and 

coefficient of variability of 0.3.  These constraints were used for both target and 

distractor trials.  The result is a relatively large redundant target effect.  For the lower 

end of the range, we used the linear ballistic accumulator model in a similar way.  To 

minimize the redundant target effects, we reduced the coefficient of variability to 0.1.  

This yielded a relatively small redundant target effect.  While these predictions are not 

bounds, they illustrate the range of typical effects. 

Lastly, consider the predictions of our standard fixed-capacity, parallel model.  

As with our unlimited-capacity model, we rely on the two special cases with similar 

constraints.  The one twist is that is get a more negative effect for the lower end of the 

range, the linear ballistic accumulator model was paired with a coefficient of variability 

of 0.3.  For this model, the predictions now span a range that includes both positive and 

negative redundant target effects. 
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Predictions of redundant target effects on response time distributions  

As explained in preceding sections of this Appendix, the serial model makes 

unique predictions about the distributions of correct response times (RTs) on redundant 

target trials. That is because on some fraction of trials, the target that gets processed first 

is misidentified as a distractor, so search continues to process the second target, which is 

then responded to correctly with a relatively long latency. In theory, this could create a 

bimodal distribution of RTs, with a greater standard deviation than the distribution of 

RTs on single-target trials. But would such a change in the RT distribution be measurable 

in our experiments?  

 To illustrate, we conducted simulations of RT distributions based on the semantic 

task of Experiment 3. For this simulation, we increased the probability of an error in the 

one-target condition from the empirical mean of 2.2% to 10%. that increases the 

distinctiveness of the prediction of the standard serial model, which depends  on initial 

misidentifications of one target before processing the other.  

 The following Figure A1 shows four distributions. We start with a distribution 

predicted by the linear ballistic accumulator (LBA) model fit to the one-target condition. 

This distribution for the one-target condition is the solid black curve in the figure. It 

matches the data in both mean and standard deviation, but its exact shape is from the 

LBA model.  
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Figure A1: Predicted distributions of correct response times for trials with 1 target 
(black) or for trials with 2 targets, for 3 different models in different colors. UC = 

unlimited capacity; FC = fixed capacity.  

Given this starting point, the three standard models predict specific distributions 

for the two-target condition. The prediction for the unlimited-capacity parallel model is 

the dashed blue curve. It shows the usual positive redundant target effect: a shift to faster 

response times. Notice the reduction in the tail of the distribution. The prediction for the 

fixed-capacity parallel model is the dot-dashed green curve. It shows a tiny negative 

redundant target effect but, for this example, mostly falls near the one-target distribution. 

The prediction for the standard serial model is the dotted red curve. It shows a somewhat 

larger shift to slower response times. Its unique feature is the tail of the distribution which 

is heavier on the right than the other models’ predictions.  
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 Unfortunately, even with the error rate exaggerated at 10%, the serial model's 

prediction of a heavier tail is a small effect.  It is nothing like a response time distribution 

with two modes. This is because the variability of response time is large relative to the 

duration of the additional processing time in the redundant target condition. Detecting 

the heavier tail predicted by the standard serial model would require a large and careful 

experiment and is beyond the current experiments.  

 Rather than comparing the shapes of the response time distributions, a simpler 

approach is to investigate the variability of the distributions. In the preceding Appendix 

sections that describe each model separately, we attempted to derive predictions for the 

standard deviation (SD) of responses times. The standard serial model predicts that the 

SD in the redundant target condition is larger than in the single target condition. The 

fixed-capacity parallel model can predict either a larger or smaller SD in the redundant 

target condition. For the unlimited capacity parallel model, we have not been able to 

formally derive a prediction. But for all the special cases we have investigated, the SD in 

the redundant target condition is smaller than in the single target condition.  

In summary, the RT distributions could in theory confirm the results in the RT 

means. The current experiments were not designed to reveal these effects, which our 

simulations predict would be small relative to the observed variability within each 

condition. Moreover, the predictions for RT variability exactly mirror the predictions for 
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the means, for all three classes of models. Therefore, they would not add any unique 

leverage to distinguish the models.  


